|
|
Line 71: |
Line 71: |
| <article> | | <article> |
| | | |
− | In synthetic biology the control of transcription and translation is of enormous importance. Therefore, promoters and ribosome binding sites (RBS) play a central role in each iGEM project. Choosing the optimal promoter and RBS combination for a gene of interest can be crucial, since small changes in the protein expression level can lead to large changes in the resulting effect inside synthetic gene circuits. To address the challenge of choosing the right promoter, we designed a promoter-RBS library as this year’s parts collection as well as a suitable measurement system to analyze the expression strength of the chosen promoter-RBS combination. With our <a href="http://parts.igem.org/Part:BBa_K2638560"> measurement vector </a>, the library could be easily expanded by future iGEM teams and the results are comparable due to normalization of the measured signal to a second reporter protein. We submitted our designed vector (BBa_K2638560) to assess the promoter-RBS combination expression strength accurately, based on two reporter genes. | + | In synthetic biology the control of transcription and translation is of enormous importance. Therefore, promoters and ribosome binding sites (RBS) play a central role in each iGEM project. Choosing the optimal promoter and RBS combination for a gene of interest can be crucial, since small changes in the protein expression level can lead to large changes in the resulting effect inside synthetic gene circuits. To address the challenge of choosing the right promoter, we designed a promoter-RBS library as this year’s parts collection as well as a suitable measurement system to analyze the expression strength of the chosen promoter-RBS combination. With our <a href="http://parts.igem.org/Part:BBa_K2638560"> measurement vector </a>, the library could be easily expanded by future iGEM teams and the results are comparable due to normalization of the measured signal to a second reporter protein. We submitted our designed vector (<a href="http://parts.igem.org/Part:BBa_K2638560">BBa_K2638560</a>) to assess the promoter-RBS combination expression strength accurately, based on two reporter genes. |
| Our collection contains a variety of iGEM standard promoters like the Anderson promoter library, as well as inducible promoters. This collection is integrated in our whole project. We tested all of our promoter-RBS combinations which are important for different parts of our project. By combining different RBS and promoters, the individual strength of the RBS and promoter parts can be checked, too. | | Our collection contains a variety of iGEM standard promoters like the Anderson promoter library, as well as inducible promoters. This collection is integrated in our whole project. We tested all of our promoter-RBS combinations which are important for different parts of our project. By combining different RBS and promoters, the individual strength of the RBS and promoter parts can be checked, too. |
| With our part collection we improved our <a href="http://parts.igem.org/Promoters/Catalog/Anderson">Anderson promoter library</a>, which offers the probability to choose the strength of a knock-down using a specific promoter. Furthermore, we used the promoter-RBS combination measurement to determine the optimal expression level of our <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Accumulation">membrane proteins</a> and our <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Toxicity_Theory">anti-toxicity</a> project.. To sum up, we analyzed 26 promoter-RBS combinations, modeled 37 more and therefore provided the iGEM community with detailed information regarding their future projects. In addition, we designed a database that allows us to easily find a promoter or promoter-RBS combination. If you want to express a slightly toxic protein, for example, you can find a weak combination. If you are looking for a suitable expression system for your reporter gene, you can choose the optimal strength with the help of our data. | | With our part collection we improved our <a href="http://parts.igem.org/Promoters/Catalog/Anderson">Anderson promoter library</a>, which offers the probability to choose the strength of a knock-down using a specific promoter. Furthermore, we used the promoter-RBS combination measurement to determine the optimal expression level of our <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Accumulation">membrane proteins</a> and our <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Toxicity_Theory">anti-toxicity</a> project.. To sum up, we analyzed 26 promoter-RBS combinations, modeled 37 more and therefore provided the iGEM community with detailed information regarding their future projects. In addition, we designed a database that allows us to easily find a promoter or promoter-RBS combination. If you want to express a slightly toxic protein, for example, you can find a weak combination. If you are looking for a suitable expression system for your reporter gene, you can choose the optimal strength with the help of our data. |
Line 88: |
Line 88: |
| | | |
| <article> | | <article> |
− | Analyzing the expression strength of individual promoter-RBS combinations is quite challenging. The main reasons hindering accurate promoter-RBS characterization, are fluctuating copy-number changes of the expression plasmid (Jahn, M. et al,2016) or growth phase specific expression changes due to effects of sigma factors (Bervoets, I. <i>et al.</i>, 2018). To avoid these errors, we designed a measurement vector carrying two reporter genes, which enables us to normalize the expression strength of the measured promoter-RBS combination to a constant expression level of the reference reporter gene. In this way, the effect of a varying plasmid copy number inside the cells can be taken into account.. Our measurement vector is based on the expression strength of the different promoter-RBS combinations from our library cloned upstream of <i>mRFP</i> and a double terminator (BBa_K2638426) into the pSB1C3 BioBrick site. Furthermore, our measurement vector carries a eCFP (BBa_E0022) under control of a strong/weak Anderson promoter (BBa_J23100) and the RBS BBa_J61100 followed by a double terminator (Fig. 1). Thus, the constitutive eCFP expression is proportional to the plasmid’s copy-number. This enables a normalization of the <i>mRFP</i> expression to the plasmid’s copy-number and direct assessment of our library’s promoter-RBS combinations expression strength. As this measurement is independent of plasmid effects it enables comparison with our modeling as well as with other expression constructs. | + | Analyzing the expression strength of individual promoter-RBS combinations is quite challenging. The main reasons hindering accurate promoter-RBS characterization, are fluctuating copy-number changes of the expression plasmid (Jahn, M. et al,2016) or growth phase specific expression changes due to effects of sigma factors (Bervoets, I. <i>et al.</i>, 2018). To avoid these errors, we designed a measurement vector carrying two reporter genes, which enables us to normalize the expression strength of the measured promoter-RBS combination to a constant expression level of the reference reporter gene. In this way, the effect of a varying plasmid copy number inside the cells can be taken into account.. Our measurement vector is based on the expression strength of the different promoter-RBS combinations from our library cloned upstream of <i>mRFP</i> and a double terminator (BBa_K2638426) into the pSB1C3 BioBrick site. Furthermore, our measurement vector carries a eCFP (<a href="http://parts.igem.org/Part:BBa_E0022">BBa_E0022</a>) under control of a strong/weak Anderson promoter (<a href="http://parts.igem.org/Part:BBa_J23100">BBa_J23100</a>) and the RBS <a href="http://parts.igem.org/Part:BBa_J61100">BBa_J61100</a> followed by a double terminator (Fig. 1). Thus, the constitutive eCFP expression is proportional to the plasmid’s copy-number. This enables a normalization of the <i>mRFP</i> expression to the plasmid’s copy-number and direct assessment of our library’s promoter-RBS combinations expression strength. As this measurement is independent of plasmid effects it enables comparison with our modeling as well as with other expression constructs. |
| | | |
| </article> | | </article> |
Line 99: |
Line 99: |
| </figure> | | </figure> |
| <article> | | <article> |
− | Due to the DNA submission requirements, we choose the reporter gene <i>mRFP</i> as insert, to enable successful submission of our designed and constructed plasmid backbone. It also enables a quick and easy control if the cloning was successful. In regard to the use of a second fluorophore, the emission and absorption spectra should not interact with each other. Therefore, we did not use GFP, one of the most used reporters in iGEM. The use of GFP and mRFP would enable a FRET (Foerster Resonance Transfer), and thus an interference regarding the detection signal. Since the difference between the absorption spectrum of mRFP and the emission of the eCFP is larger than the distance between the emission of GFP and the absorption of mRFP, we chose eCFP and mRFP as a good combination for our purposes Thus, eCFP and mRFP fluorescence should be detectable at the same time without any interferences. | + | Due to the DNA submission requirements, we choose the reporter gene <i>mRFP</i> as insert, to enable successful submission of our designed and constructed plasmid backbone. It also enables a quick and easy control if the cloning was successful. In regard to the use of a second fluorophore, the emission and absorption spectra should not interact with each other. Therefore, we did not use GFP, one of the most used reporters in iGEM. The use of GFP and mRFP would enable a FRET (Foerster Resonance Transfer)(Bajar, B. T. <i>et al</i>, 2016), and thus an interference regarding the detection signal. Since the difference between the absorption spectrum of mRFP and the emission of the eCFP is larger than the distance between the emission of GFP and the absorption of mRFP, we chose eCFP and mRFP as a good combination for our purposes Thus, eCFP and mRFP fluorescence should be detectable at the same time without any interferences. |
| </article> | | </article> |
| | | |
Line 124: |
Line 124: |
| | | |
| <article> | | <article> |
− | For the modeling of our promoter-RBS combinations we used the given strengths of the Anderson promoters (BBa_J23119, BBa_J23100 to BBa_J23110) and the strengths of different RBS (BBa_J61100, BBa_B0030, BBa_B0031) to determine an estimate for their absolute strength. | + | For the modeling of our promoter-RBS combinations we used the given strengths of the Anderson promoters (<a href="http://parts.igem.org/Part:BBa_J23119">BBa_J23119</a>, <a href="http://parts.igem.org/Part:BBa_J23100">BBa_J23100</a> to <a href="http://parts.igem.org/Part:BBa_J23110">BBa_J23110</a>) and the strengths of different RBS (<a href="http://parts.igem.org/Part:BBa_J61100">BBa_J61100</a>, <a href="http://parts.igem.org/Part:BBa_B0030">BBa_B0030</a>, <a href="http://parts.igem.org/Part:BBa_B0031">BBa_B0031</a>) to determine an estimate for their absolute strength. |
| Prior to the experimental validation, we modeled the expression strength of different promoter and RBS combinations to create a database for our further experiments. Therefore, we used the given strength of the Anderson promoters and the strength of the different known RBS to determine and visualize their absolute strength shown in Figure 2. Especially for our siRNA system, it was interesting to see the differences between inducible and constitutive promoters. | | Prior to the experimental validation, we modeled the expression strength of different promoter and RBS combinations to create a database for our further experiments. Therefore, we used the given strength of the Anderson promoters and the strength of the different known RBS to determine and visualize their absolute strength shown in Figure 2. Especially for our siRNA system, it was interesting to see the differences between inducible and constitutive promoters. |
| | | |
Line 139: |
Line 139: |
| | | |
| <article> | | <article> |
− | The visualization of the modeled expression strength is shown in Figure 2. The expression is influenced by the different used RBS, which are indicated with different colors. The modeling shows a significant influence of the different RBS on the expression strength, independent from the use of different promoters. In theory, the RBS has a stronger influence of the expression strength, than the promoter, which only influences the transcription, while the RBS influences the translation. When the J61100 RBS is used, the expression strength of the construct is statistically larger (approximately eight times higher) than in the other modeled RBS. The modeling shows a relatively small influence on the expression strength whether the RBS B0030 or B0031 is used. | + | The visualization of the modeled expression strength is shown in Figure 2. The expression is influenced by the different used RBS, which are indicated with different colors. The modeling shows a significant influence of the different RBS on the expression strength, independent from the use of different promoters. In theory, the RBS has a stronger influence of the expression strength, than the promoter, which only influences the transcription, while the RBS influences the translation. When the <a href="http://parts.igem.org/Part:BBa_J61100">J61100</a> RBS is used, the expression strength of the construct is statistically larger (approximately eight times higher) than in the other modeled RBS. The modeling shows a relatively small influence on the expression strength whether the RBS <a href="http://parts.igem.org/Part:BBa_B0030">B0030</a> or <a href="http://parts.igem.org/Part:BBa_B0031">B0031</a> is used. |
| </article> | | </article> |
| | | |
Line 314: |
Line 314: |
| <b>Rudge, T. J., Brown, J. R., Federici, F., Dalchau, N., Phillips, A., Ajioka, J. W., & Haseloff, J. (2016). </b> Characterization of intrinsic properties of promoters. ACS synthetic biology, 5(1), 89-98. | | <b>Rudge, T. J., Brown, J. R., Federici, F., Dalchau, N., Phillips, A., Ajioka, J. W., & Haseloff, J. (2016). </b> Characterization of intrinsic properties of promoters. ACS synthetic biology, 5(1), 89-98. |
| </br> | | </br> |
− | | + | <b>Bajar, B. T., Wang, E. S., Zhang, S., Lin, M. Z., & Chu, J. (2016).</b> A guide to fluorescent protein FRET pairs. Sensors, 16(9), 1488. |
| | | |
| | | |