Line 137: | Line 137: | ||
<b>Mechanical Design</b><br><br> | <b>Mechanical Design</b><br><br> | ||
− | <img src="https://static.igem.org/mediawiki/2018/3/3d/T--SDSZ_China--36.jpg" class="rounded mx-auto d-block" alt="..." width="30%" height="30%" style="Padding:0px" | + | <img src="https://static.igem.org/mediawiki/2018/3/3d/T--SDSZ_China--36.jpg" class="rounded mx-auto d-block" alt="..." width="30%" height="30%" style="Padding:0px"><br> |
As shown in the figure above, the reaction tank is composed of chamber A, B, and C in which lobster shells can fully get in contact with sodium hydroxide solution. All chambers are equipped with timers and transport units while one of the chambers is equipped with a heater. <br> | As shown in the figure above, the reaction tank is composed of chamber A, B, and C in which lobster shells can fully get in contact with sodium hydroxide solution. All chambers are equipped with timers and transport units while one of the chambers is equipped with a heater. <br> | ||
Line 144: | Line 144: | ||
<br> | <br> | ||
− | After filling all of the chambers with low concentrated alkali solution, the reaction cycle starts. When one round of 24-hour reaction is completed inside chamber A or C, the lobster shells are abstracted from the chamber and put into chamber B through the control of timers and transport units. The materials react inside chamber B for a heated reaction of 4 hours or a non-heated reaction for 12 hours. The leftover of the reaction inside chamber A and C are provided time to fully deposit, and the sediments are extracted after a 12-hour deposition as chemical fertilizer while the liquid supernatant remains inside the tanks to react with a new round of lobster shells. Meanwhile, when the transformation inside chamber B is finished, the products of the reaction are abstracted and transferred into the next unit of the machine while the leftover of the reaction keeps on depositing for 8 or 12 hours (depending on if the former reaction is heated) until solid sediment can be fully set apart and abstracted from the liquid supernatant.<br> | + | After filling all of the chambers with low concentrated alkali solution, the reaction cycle starts. When one round of 24-hour reaction is completed inside chamber A or C, the lobster shells are abstracted from the chamber and put into chamber B through the control of timers and transport units. The materials react inside chamber B for a heated reaction of 4 hours or a non-heated reaction for 12 hours. The leftover of the reaction inside chamber A and C are provided time to fully deposit, and the sediments are extracted after a 12-hour deposition as chemical fertilizer while the liquid supernatant remains inside the tanks to react with a new round of lobster shells. Meanwhile, when the transformation inside chamber B is finished, the products of the reaction are abstracted and transferred into the next unit of the machine while the leftover of the reaction keeps on depositing for 8 or 12 hours (depending on if the former reaction is heated) until solid sediment can be fully set apart and abstracted from the liquid supernatant.<br><br> |
− | <b>Improvement</b | + | <b>Improvement</b><br> |
The calculated and specially designed time control system of the reaction indicates higher efficiency of the reaction by increasing the utilization of each reaction tank in a given amount of time. The deposition of reactants not only increases the utility of all products and by-products of the reaction, but also helps reduce the overuse and emission of alkali solution. The process protects natural water body. Energy consumption is decreased in that only one of the three tanks needs to be heated discontinuously during the complete process of the reaction, and the amount of safety accidents caused by wrong operation while heating is consequently reduced to the least. | The calculated and specially designed time control system of the reaction indicates higher efficiency of the reaction by increasing the utilization of each reaction tank in a given amount of time. The deposition of reactants not only increases the utility of all products and by-products of the reaction, but also helps reduce the overuse and emission of alkali solution. The process protects natural water body. Energy consumption is decreased in that only one of the three tanks needs to be heated discontinuously during the complete process of the reaction, and the amount of safety accidents caused by wrong operation while heating is consequently reduced to the least. | ||
</header> | </header> |
Revision as of 01:51, 18 October 2018