Line 172: | Line 172: | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/3/39/T--Bielefeld-CeBiTec--BBa_K1189019_LK.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/3/39/T--Bielefeld-CeBiTec--BBa_K1189019_LK.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 7:</b> Automatic identification of 147 silver nanoparticles in the wildtype human ferritin sample (BBa_K1189019). |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
+ | |||
+ | <article> | ||
+ | Figure 7 shows a TEM image with 147 identified silver nanoparticles produced by the wild type human ferritin (BBa_K1189019). The particles are between 24.5 and 1597.8 nm in size with one very big particle with a size of 7272.3 nm, which seems to consist in many agglutinated silver nanoparticles. No particle was found in the expected size of about 8 nm. | ||
+ | </article> | ||
<figure role="group"> | <figure role="group"> | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/9/95/T--Bielefeld-CeBiTec--BBa_K2638999_LK.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/9/95/T--Bielefeld-CeBiTec--BBa_K2638999_LK.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 8:</b> Automatic identification of 708 silver nanoparticles in the gold silver mutant ferritin sample (BBa_K2638999). 431 (60.8%) of the nanoparticles had a mean diameter of 8 nm or less. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
− | + | <article> | |
+ | Figure 8 shows a TEM image with 708 identified silver nanoparticles produced by the gold silver mutant ferritin sample (BBa_K2638999). The particles have a size between 1.8 and 34.8 nm. 120 of the silver nanoparticles (16.9 %) are exactly in the expected size of 7 to 9 nm which indicates that at least all of these particles are produced by our improved ferritin (BBa_K2638999). | ||
+ | </article> | ||
<article> | <article> | ||
Line 193: | Line 199: | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/8/88/T--Bielefeld-CeBiTec--nanoparticles_result_LK.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/8/88/T--Bielefeld-CeBiTec--nanoparticles_result_LK.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 9:</b> The silver nanoparticles in our gold silver mutant ferritin (BBa_K2638999) with a mean diameter of 8.2 nm were significant smaller than the nanoparticles of the wildtype human ferritin (BBa_K1189019) with a mean diameter of 531.8 nm. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
+ | |||
+ | <article> | ||
+ | The direct comparison of our new gold silver mutant ferritin (BBa_K2638999) and the old wild type human ferritin (BBa_K1189019) in figure 9 shows that our improved enzyme produces nearly five times more silver nanoparticles which are 98.5 % smaller than the silver nanoparticles produced by the wild type ferritin. This proves that the new ferritin enzyme is much more suitable for producing silver nanoparticles than the wild type version. | ||
+ | </article> | ||
+ | |||
<figure role="group"> | <figure role="group"> | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/8/87/T--Bielefeld-CeBiTec--jr--G1CAL_13and10nm.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/8/87/T--Bielefeld-CeBiTec--jr--G1CAL_13and10nm.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 10:</b> Automatic identification of 2 gold nanoparticles (13 and 10 nm) in the wildtype human ferritin sample (BBa_K1189019). |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
Line 205: | Line 216: | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/6/68/T--Bielefeld-CeBiTec--jr--G1Bi_7and9nm.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/6/68/T--Bielefeld-CeBiTec--jr--G1Bi_7and9nm.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 11:</b> Automatic identification of 2 gold nanoparticles (7 and 9 nm) in the gold silver mutant ferritin sample (BBa_K2638999). These nanoparticles are approximately 30 % smaller than the nanoparticles produced by the wildtype ferritin. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
Line 212: | Line 223: | ||
<h2>Outlook</h2> | <h2>Outlook</h2> | ||
<article> | <article> | ||
− | Nanoparticles produced with ferritin can be used in various apllications (Figure | + | Nanoparticles produced with ferritin can be used in various apllications (Figure 12). As example, they can be directly used inside the ferritin cage for moleculer imaging (Wang et al., 2017b). When extracted, they can be used as antibacterial agent, in particular silver nanoparticles (Wang et al., 2017a), as biosensor (Castro et al., 2014) or they can be printed and melted to produce electronic circuits (Ummartyotin et al., 2012). In particular, we have dealt with the printing of electronics in our project. |
</article> | </article> | ||
Line 218: | Line 229: | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/b/b8/T--Bielefeld-CeBiTec--applications_imp_nanoparticles_vk.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/b/b8/T--Bielefeld-CeBiTec--applications_imp_nanoparticles_vk.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 12:</b> Possible applications of nanoparticles produced with ferritin. |
</figcaption> | </figcaption> | ||
</figure> | </figure> |
Revision as of 02:02, 18 October 2018
Improve a Part
Original Part: BBa_K1189019
Short summary
Improved Human Ferritin: BBa_K2638999
Outlook
Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.
Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008).. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.
Castro, L., Blázquez, M.L., Muñoz, J., González, F., and Ballester, A. (2014).. Mechanism and Applications of Metal Nanoparticles Prepared by Bio-Mediated Process. Rev. Adv. Sci. Eng. 3.
Ensign, D., Young, M., and Douglas, T. (2004).. Photocatalytic synthesis of copper colloids from CuII by the ferrihydrite core of ferritin. Inorg. Chem. 43: 3441–3446.
Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., and Lopez, R. (2010).. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: W695-699.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004).UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., and Manuspiya, H. (2012). . DSynthesis of colloidal silver nanoparticles for printed electronics. /data/revues/16310748/v15i6/S1631074812000549/.
Wang, L., Hu, C., and Shao, L. (2017a).. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine 12: 1227–1249.
Wang, Z., Gao, H., Zhang, Y., Liu, G., Niu, G., and Chen, X. (2017b).. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11: 633–646.