(22 intermediate revisions by the same user not shown) | |||
Line 18: | Line 18: | ||
− | <section class="engine"><a href="https://mobiri.se/k">develop your own website</a></section><section class="header9 cid-r5el55DVH6 mbr-fullscreen mbr-parallax-background" id="header9-g"> | + | <section class="engine"><a href="https://mobiri.se/k">develop your own website</a><br></section><section class="header9 cid-r5el55DVH6 mbr-fullscreen mbr-parallax-background" id="header9-g"> |
Line 38: | Line 38: | ||
</a> | </a> | ||
</div> | </div> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6FjJbsElO" id="header5-1t"> | <section class="header5 cid-r6FjJbsElO" id="header5-1t"> | ||
Line 49: | Line 49: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Abstract</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Abstract</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">To identify which serotype of dengue virus your target patient is infected with, many methods have been explored and established. Since our prediction model requires the certain number of consensus time-scale data, it has been urgent to develop a high-throughput and cost-efficient tool for the serotype identification.<br><br>With the assistance of Dr. Suzuki at National Institute of Infectious Diseases, our team designed a new detection system with fluorescence protein. Three types of constructs (Genetic feactures: 1. C, 2. prM-E and 3. Fluorescence protein-FMDV2a-NS) should be prepared first. After that, they are introduced into HEK293T cells and pseudo-viruses are produced after a certain interval. They are added to cultured Vero cells to check the infectivity by measuring the intensity of fluorescence emitted from fluorescence protein that works as mono-cistron.<br><br>Since each one of the constructs contains either structural or non-structural region, the pseudo-virus just causes single-round infection. In terms of biosafety, our system and products that apply this system can be demonstrated even in the real world.<br><br></span> |
</div> | </div> | ||
Line 56: | Line 56: | ||
− | </section> | + | <br></section> |
+ | |||
+ | |||
+ | <section class="cid-r6KuTIObyS" id="image1-33"> | ||
+ | |||
+ | |||
+ | |||
+ | <figure class="mbr-figure container"> | ||
+ | <div class="image-block" style="width: 84%; background-color: #ffffff"> | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2018/0/07/T--Tokyo_Tech--presentation12.png" width="1400" alt="Mobirise" title=""> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/8/81/T--Tokyo_Tech--presentation13.png" width="1400" alt="Mobirise" title=""> | ||
+ | |||
+ | </div> | ||
+ | </figure> | ||
+ | |||
+ | <br></section> | ||
+ | |||
+ | <section class="header5 cid-r6KuYlSVmJ" id="header5-34"> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div class="container"> | ||
+ | <div class="row justify-content-center"> | ||
+ | <div class="mbr-white col-md-10"> | ||
+ | |||
+ | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 0: How Our Type Detection System Works</span> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <br></section> | ||
<section class="header5 cid-r6KAcvISwS" id="header5-3e"> | <section class="header5 cid-r6KAcvISwS" id="header5-3e"> | ||
Line 67: | Line 101: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Background</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Background</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">RT-PCR, ELISA and neutrilization assay - these methods have been widely used to identify infection experience and its serotype. However, RT-PCR is valid only for 0 to 5 days after infection and ELISA and neutralization assay have problem with cost-efficiency.<br></span> |
</div> | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
+ | <br> | ||
− | + | <br></section> | |
− | </section> | + | |
<section class="cid-r6KuTIObyS" id="image1-33"> | <section class="cid-r6KuTIObyS" id="image1-33"> | ||
Line 81: | Line 115: | ||
<figure class="mbr-figure container"> | <figure class="mbr-figure container"> | ||
− | <div class="image-block" style="width: | + | <div class="image-block" style="width: 84%"> |
<img src="https://static.igem.org/mediawiki/2018/a/a5/T--Tokyo_Tech--response_graphic.jpg" width="1400" alt="Mobirise" title=""> | <img src="https://static.igem.org/mediawiki/2018/a/a5/T--Tokyo_Tech--response_graphic.jpg" width="1400" alt="Mobirise" title=""> | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | |
+ | <br></section> | ||
<section class="header5 cid-r6KuYlSVmJ" id="header5-34"> | <section class="header5 cid-r6KuYlSVmJ" id="header5-34"> | ||
Line 97: | Line 132: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 1: Change in viral load and antibodies (Source: <a href="https://www.nature.com/scitable/topicpage/host-response-to-the-dengue-virus-22402106">Guzman, M. G. et al., 2010</a>)</span> |
</div> | </div> | ||
Line 104: | Line 139: | ||
− | </section> | + | <br></section> |
<section class="cid-r6KuTIObyS" id="image1-33"> | <section class="cid-r6KuTIObyS" id="image1-33"> | ||
Line 111: | Line 146: | ||
<figure class="mbr-figure container"> | <figure class="mbr-figure container"> | ||
− | <div class="image-block" style="width: | + | <div class="image-block" style="width: 84%; background-color: #ffffff"> |
<img src="https://static.igem.org/mediawiki/2018/b/b0/T--Tokyo_Tech--presentation30.png" width="1400" alt="Mobirise" title=""> | <img src="https://static.igem.org/mediawiki/2018/b/b0/T--Tokyo_Tech--presentation30.png" width="1400" alt="Mobirise" title=""> | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6KuYlSVmJ" id="header5-34"> | <section class="header5 cid-r6KuYlSVmJ" id="header5-34"> | ||
Line 127: | Line 162: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 2: Comparison of dengue detection system with existing ones<br></span> |
</div> | </div> | ||
Line 134: | Line 169: | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6qCyOOabe" id="header5-1m"> | <section class="header5 cid-r6qCyOOabe" id="header5-1m"> | ||
Line 145: | Line 180: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Experiment Overview</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Experiment Overview</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Our experiment consists of three parts: 1. Construction, 2. Pseudo-virus Production and 3. Pseudo-virus Infection. After three types of constructs are introduced into HEK293T cells, pseudo-viruses are produced. They are added to cultured Vero cells, and you can check the infection after a certain interval.<br></span> |
</div> | </div> | ||
Line 152: | Line 187: | ||
− | </section> | + | <br></section> |
<section class="cid-r6KDuIbDzJ" id="image1-3l"> | <section class="cid-r6KDuIbDzJ" id="image1-3l"> | ||
Line 159: | Line 194: | ||
<figure class="mbr-figure container"> | <figure class="mbr-figure container"> | ||
− | <div class="image-block" style="width: | + | <div class="image-block" style="width: 84%; background-color: #ffffff"> |
<img src="https://static.igem.org/mediawiki/2018/9/9e/T--Tokyo_Tech--presentation5.png" width="1400" alt="Mobirise" title=""> | <img src="https://static.igem.org/mediawiki/2018/9/9e/T--Tokyo_Tech--presentation5.png" width="1400" alt="Mobirise" title=""> | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6KDvxIfJJ" id="header5-3m"> | <section class="header5 cid-r6KDvxIfJJ" id="header5-3m"> | ||
Line 175: | Line 210: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 3: Experiment Overview (iGEM Tokyo Tech 2018)<br></span> |
</div> | </div> | ||
Line 182: | Line 217: | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6KzdsL6mG" id="header5-38"> | <section class="header5 cid-r6KzdsL6mG" id="header5-38"> | ||
Line 193: | Line 228: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-5">1. Construction</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-5">1. Construction</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">For the pseudo-virus production, we prepared structural gene, and non-structural gene with fluorescence protein gene.<br><br>About structural gene, capsid (C), membrane (prM) and envelope (E) are necessary for the formation of viral structure. We prepared pCAG-C and pCAG-prM-E for Serotype I to IV.<br><br>About non-structural gene with fluorescence protein gene, we prepared EGFP-FMDV2a, DsRed-Express-FMDV2a, ZsYellow-FMDV2a and AmCyan-FMDV2a, and inserted each of them to non-structural genes of dengue virus.</span> |
</div> | </div> | ||
+ | <div class="mbr-section-btn align-center"><a class="btn btn-primary display-4" href="https://static.igem.org/mediawiki/2018/3/3a/T--Tokyo_Tech--protocol_construction.pdf" target="_blank">Protocol</a> | ||
+ | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
− | </section> | + | <br></section> |
+ | |||
+ | |||
<section class="cid-r6InaHWmgY" id="image1-23"> | <section class="cid-r6InaHWmgY" id="image1-23"> | ||
Line 207: | Line 246: | ||
<figure class="mbr-figure container"> | <figure class="mbr-figure container"> | ||
− | <div class="image-block" style="width: | + | <div class="image-block" style="width: 84%; background-color: #ffffff"> |
<img src="https://static.igem.org/mediawiki/2018/9/95/T--Tokyo_Tech--presentation40.png" width="1400" alt="Mobirise" title=""> | <img src="https://static.igem.org/mediawiki/2018/9/95/T--Tokyo_Tech--presentation40.png" width="1400" alt="Mobirise" title=""> | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6Inu5vSsi" id="header5-24"> | <section class="header5 cid-r6Inu5vSsi" id="header5-24"> | ||
Line 223: | Line 262: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 4: Construct line-up and original genes derived from dengue virus<br></span> |
</div> | </div> | ||
Line 230: | Line 269: | ||
− | </section> | + | <br><br></section> |
− | + | ||
Line 243: | Line 281: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-5">2. Pseudo-virus Production</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-5">2. Pseudo-virus Production</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">We introduced pCAG-C, pCAG-prM-E and FP-FMDV2a (FP: Fluorescence Protein) into HEK293T cells. After cell culture for about 2 days, we collect the supernatant that contains pseudo-viruses produced from HEK293T cells.</span> |
</div> | </div> | ||
+ | <div class="mbr-section-btn align-center"><a class="btn btn-primary display-4" href="https://static.igem.org/mediawiki/2018/b/b3/T--Tokyo_Tech--protocol_transfection.pdf" type="application/pdf" target="_blank">Protocol</a> | ||
+ | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
− | </section> | + | <br></section> |
<section class="cid-r6KAWIpVoB" id="image1-3f"> | <section class="cid-r6KAWIpVoB" id="image1-3f"> | ||
Line 257: | Line 297: | ||
<figure class="mbr-figure container"> | <figure class="mbr-figure container"> | ||
− | <div class="image-block" style="width: | + | <div class="image-block" style="width: 84%; background-color: #ffffff"> |
<img src="https://static.igem.org/mediawiki/2018/9/91/T--Tokyo_Tech--presentation9.png" width="1400" alt="Mobirise" title=""> | <img src="https://static.igem.org/mediawiki/2018/9/91/T--Tokyo_Tech--presentation9.png" width="1400" alt="Mobirise" title=""> | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6KAXSmIuc" id="header5-3g"> | <section class="header5 cid-r6KAXSmIuc" id="header5-3g"> | ||
Line 273: | Line 313: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 5: Basic flow of transfection and pseudo-virus production<br></span> |
</div> | </div> | ||
Line 280: | Line 320: | ||
− | </section> | + | <br><br></section> |
+ | |||
<section class="header5 cid-r6KxQEHInw" id="header5-35"> | <section class="header5 cid-r6KxQEHInw" id="header5-35"> | ||
Line 291: | Line 332: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-5">3. Pseudo-virus Infection and Functional Evaluation of Pseudo-virus</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-5">3. Pseudo-virus Infection and Functional Evaluation of Pseudo-virus</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">After collecting pseudo-viruses from HEK293T cells, we added them to Vero cells. When they can successfully infect the cells, the enclosed fluorescence protein gene is coded and we tried to estimate the amount by measuring the fluorescence intensity.</span> |
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Since we split up the structural region and non-structural region, the pseudo-viruses produced in our system can infect host cells only once. Thus, it will not spread out of the system and will not be harmful.</span> |
</div> | </div> | ||
+ | <div class="mbr-section-btn align-center"><a class="btn btn-primary display-4" href="https://static.igem.org/mediawiki/2018/6/63/T--Tokyo_Tech--protocol_infection.pdf" type="application/pdf" target="_blank">Protocol</a> | ||
+ | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
− | </section> | + | <br></section> |
<section class="cid-r6KAYXPlML" id="image1-3h"> | <section class="cid-r6KAYXPlML" id="image1-3h"> | ||
Line 306: | Line 349: | ||
<figure class="mbr-figure container"> | <figure class="mbr-figure container"> | ||
− | <div class="image-block" style="width: | + | <div class="image-block" style="width: 84%; background-color: #ffffff"> |
<img src="https://static.igem.org/mediawiki/2018/3/34/T--Tokyo_Tech--presentation10.png" width="1400" alt="Mobirise" title=""> | <img src="https://static.igem.org/mediawiki/2018/3/34/T--Tokyo_Tech--presentation10.png" width="1400" alt="Mobirise" title=""> | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6KAZyZ0Pv" id="header5-3i"> | <section class="header5 cid-r6KAZyZ0Pv" id="header5-3i"> | ||
Line 322: | Line 365: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 6: Basic flow of pseudo-virus infection and how fluorescence protein works |
+ | </span> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 328: | Line 372: | ||
− | </section> | + | <br><br></section> |
+ | |||
<section class="header5 cid-r6KyNixgMR" id="header5-36"> | <section class="header5 cid-r6KyNixgMR" id="header5-36"> | ||
Line 339: | Line 384: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-5">Note: Validated Parts (Silver Medal Criteria)</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-5">Note: Validated Parts (Silver Medal Criteria)</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">DENV2 C, EGFP-FMDV2a and DsRed-Express-FMDV2a are essential for pseudo-virus production. As one of the structural genes, DENV2 C plays an important role in virus structural formation. EGFP-FMDV2a and DsRed-Express-FMDV2a are enclosed in pseudo-virus and programmed to code functional fluorescence proteins after infecting the host cells.</span> |
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">To get specific sequence and charanterization information, please see the following Parts Pages.</span> |
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
Line 350: | Line 393: | ||
− | </section> | + | <br></section> |
<section class="cid-r6KBLFZXRg" id="image1-3j"> | <section class="cid-r6KBLFZXRg" id="image1-3j"> | ||
Line 357: | Line 400: | ||
<figure class="mbr-figure container"> | <figure class="mbr-figure container"> | ||
− | <div class="image-block" style="width: | + | <div class="image-block" style="width: 84%; background-color: #ffffff"> |
<img src="https://static.igem.org/mediawiki/2018/9/9c/T--Tokyo_Tech--silver_val_parts.png" width="1400" alt="Mobirise" title=""> | <img src="https://static.igem.org/mediawiki/2018/9/9c/T--Tokyo_Tech--silver_val_parts.png" width="1400" alt="Mobirise" title=""> | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | |
+ | <br></section> | ||
Line 374: | Line 418: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 7: List of validated parts and the features<br></span> |
</div> | </div> | ||
Line 381: | Line 425: | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6JjyLuIyT" id="header5-2p"> | <section class="header5 cid-r6JjyLuIyT" id="header5-2p"> | ||
Line 391: | Line 435: | ||
<div class="row justify-content-center"> | <div class="row justify-content-center"> | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Progress | + | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Experiment Progress</h1> |
− | < | + | <h2 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Report on Oct. 17th, 2018</h2> |
− | < | + | <ul> |
− | < | + | <li style="font-size: 1.2rem">Our team successfully validated that all the necessary constructs are produced by using electrophoresis (please refer to our Parts Pages).</li> |
− | < | + | <li class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">After completing the construction, our team shifted to the transfection into HEK293T cells for pseudo-virus production. Using lipofection, the constructs have been already introduced into the cells and the pseudo-viruses will be collected in a few days.</li> |
+ | <li class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">After collecting the pseudo-viruses, they will be added to cultured Vero cells. Our team will test the infectivity by measuring the fluorescence intensity at the end.</li> | ||
+ | <li class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">The whole results will be announced in Giant Jamboree, so please do not miss it!</span></li></ul> | ||
</div> | </div> | ||
Line 402: | Line 448: | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6JjyLuIyT" id="header5-2p"> | <section class="header5 cid-r6JjyLuIyT" id="header5-2p"> | ||
Line 413: | Line 459: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Our Goal</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Our Goal</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">We try to validate that the pseudo-viruses are produced, and they can infect the host cells. Making the most of our system and lab experience, our team will make a kit to identify which type your target patient was infected with before.</span> |
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">As you can see in Fig. 8, if the patient was infected with type II virus before, type II-specific antibodies in blood serum decrease the infectivity of type II pseudo-virus. As a result, fluorescence protein programmed in the pseudo-virus would not be coded so much due to the decrease in the number of infectious viruses.</span> |
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Thus, you can identify the infection experience and its type by measuring or observing the fluorescence intensity for each type/color.</span> |
</div> | </div> | ||
Line 422: | Line 468: | ||
− | </section> | + | <br></section> |
<section class="cid-r6K1p0zJY1" id="image1-2s"> | <section class="cid-r6K1p0zJY1" id="image1-2s"> | ||
Line 434: | Line 480: | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6JdPuqigd" id="header5-2n"> | <section class="header5 cid-r6JdPuqigd" id="header5-2n"> | ||
Line 445: | Line 491: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 8: Mechanism of colorimetric type detection system with different fluorescence proteins<br></span> |
</div> | </div> | ||
Line 452: | Line 498: | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6Kznc5Uus" id="header5-39"> | <section class="header5 cid-r6Kznc5Uus" id="header5-39"> | ||
Line 463: | Line 509: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Feedback to Modeling</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Feedback to Modeling</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Since our detection system enables us to collect more samling data in many areas quickly and with low cost, our prediction model can be more precise thanks to the increase in the consensus time-scale data of dengue-affected patients and serotype ratio.</span> |
</div> | </div> | ||
Line 470: | Line 516: | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6Kzov1weU" id="header5-3a"> | <section class="header5 cid-r6Kzov1weU" id="header5-3a"> | ||
Line 481: | Line 527: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Biosafety</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Biosafety</h1> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">As you can see in Fig. 9, on native virus genome, structural genes and non-structural genes are integrated on the same sequence. Thus, the whole genome are replicated and that make viruses possible to replicate themselves in host cells.</span> |
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">However, as you can see our construct design in Fig. 10, structural and non-structural regions are splitted so that the pseudo-virus cannot replicate themselves in host cells because RNA polymerase from non-structural V gene cannot replicate structural genes.</span> |
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">To sum up, our system starts and ends in one place and doesn't harm environment.</span> |
</div> | </div> | ||
Line 490: | Line 536: | ||
− | </section> | + | <br></section> |
<section class="cid-r6K1p0zJY1" id="image1-2s"> | <section class="cid-r6K1p0zJY1" id="image1-2s"> | ||
Line 502: | Line 548: | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6JdPuqigd" id="header5-2n"> | <section class="header5 cid-r6JdPuqigd" id="header5-2n"> | ||
Line 513: | Line 559: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 9: Infection process of native virus and production of infectious pseudo-virus<br></span> |
</div> | </div> | ||
Line 520: | Line 566: | ||
− | </section> | + | <br></section> |
<section class="cid-r6K1p0zJY1" id="image1-2s"> | <section class="cid-r6K1p0zJY1" id="image1-2s"> | ||
Line 532: | Line 578: | ||
</div> | </div> | ||
</figure> | </figure> | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6JdPuqigd" id="header5-2n"> | <section class="header5 cid-r6JdPuqigd" id="header5-2n"> | ||
Line 543: | Line 589: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
− | < | + | <span class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem">Figure 10: Infection process of our pseudo-virus for validating biosafety<br></span> |
</div> | </div> | ||
Line 550: | Line 596: | ||
− | </section> | + | <br></section> |
<section class="header5 cid-r6qEupz0am" id="header5-1t"> | <section class="header5 cid-r6qEupz0am" id="header5-1t"> | ||
Line 561: | Line 607: | ||
<div class="mbr-white col-md-10"> | <div class="mbr-white col-md-10"> | ||
<h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Reference</h1> | <h1 class="mbr-section-title align-center pb-3 mbr-fonts-style display-2">Reference</h1> | ||
− | < | + | <h3 class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem"><a href="https://www0.niid.go.jp/">National Institute of Infectious Diseases HP</a></h3> |
− | < | + | <h3 class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem"><a href="https://www.nature.com/scitable/topicpage/host-response-to-the-dengue-virus-22402106">Scitable: Host Response to the Dengue Virus</a></h3> |
− | < | + | <h3 class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem"><a href="https://www.ncbi.nlm.nih.gov/pubmed/28794181">Neutralization Assay for Zika and Dengue Viruses by Use of Real-Time-PCR-Based Endpoint Assessment.</a></h3> |
− | < | + | <h3 class="mbr-text align-center mbr-fonts-style" style="font-size: 1.2rem"><a href="http://www.who.int/denguecontrol/en/">WHO: Dengue control</a></h3> |
</div> | </div> | ||
</div> | </div> | ||
Line 570: | Line 616: | ||
− | + | <br></section> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <br> | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </section> | + | |
− | + | ||
Line 614: | Line 631: | ||
</div> | </div> | ||
</div> | </div> | ||
− | </section> | + | <br></section> |
Latest revision as of 02:10, 18 October 2018
<!DOCTYPE html>
Experiment
Establishment of dengue virus serotype detection system
Abstract
To identify which serotype of dengue virus your target patient is infected with, many methods have been explored and established. Since our prediction model requires the certain number of consensus time-scale data, it has been urgent to develop a high-throughput and cost-efficient tool for the serotype identification.With the assistance of Dr. Suzuki at National Institute of Infectious Diseases, our team designed a new detection system with fluorescence protein. Three types of constructs (Genetic feactures: 1. C, 2. prM-E and 3. Fluorescence protein-FMDV2a-NS) should be prepared first. After that, they are introduced into HEK293T cells and pseudo-viruses are produced after a certain interval. They are added to cultured Vero cells to check the infectivity by measuring the intensity of fluorescence emitted from fluorescence protein that works as mono-cistron.
Since each one of the constructs contains either structural or non-structural region, the pseudo-virus just causes single-round infection. In terms of biosafety, our system and products that apply this system can be demonstrated even in the real world.
Figure 0: How Our Type Detection System Works
Background
RT-PCR, ELISA and neutrilization assay - these methods have been widely used to identify infection experience and its serotype. However, RT-PCR is valid only for 0 to 5 days after infection and ELISA and neutralization assay have problem with cost-efficiency.
Figure 1: Change in viral load and antibodies (Source: Guzman, M. G. et al., 2010)
Figure 2: Comparison of dengue detection system with existing ones
Experiment Overview
Our experiment consists of three parts: 1. Construction, 2. Pseudo-virus Production and 3. Pseudo-virus Infection. After three types of constructs are introduced into HEK293T cells, pseudo-viruses are produced. They are added to cultured Vero cells, and you can check the infection after a certain interval.
Figure 3: Experiment Overview (iGEM Tokyo Tech 2018)
1. Construction
For the pseudo-virus production, we prepared structural gene, and non-structural gene with fluorescence protein gene.About structural gene, capsid (C), membrane (prM) and envelope (E) are necessary for the formation of viral structure. We prepared pCAG-C and pCAG-prM-E for Serotype I to IV.
About non-structural gene with fluorescence protein gene, we prepared EGFP-FMDV2a, DsRed-Express-FMDV2a, ZsYellow-FMDV2a and AmCyan-FMDV2a, and inserted each of them to non-structural genes of dengue virus.
Figure 4: Construct line-up and original genes derived from dengue virus
2. Pseudo-virus Production
We introduced pCAG-C, pCAG-prM-E and FP-FMDV2a (FP: Fluorescence Protein) into HEK293T cells. After cell culture for about 2 days, we collect the supernatant that contains pseudo-viruses produced from HEK293T cells.
Figure 5: Basic flow of transfection and pseudo-virus production
3. Pseudo-virus Infection and Functional Evaluation of Pseudo-virus
After collecting pseudo-viruses from HEK293T cells, we added them to Vero cells. When they can successfully infect the cells, the enclosed fluorescence protein gene is coded and we tried to estimate the amount by measuring the fluorescence intensity. Since we split up the structural region and non-structural region, the pseudo-viruses produced in our system can infect host cells only once. Thus, it will not spread out of the system and will not be harmful.
Figure 6: Basic flow of pseudo-virus infection and how fluorescence protein works
Note: Validated Parts (Silver Medal Criteria)
DENV2 C, EGFP-FMDV2a and DsRed-Express-FMDV2a are essential for pseudo-virus production. As one of the structural genes, DENV2 C plays an important role in virus structural formation. EGFP-FMDV2a and DsRed-Express-FMDV2a are enclosed in pseudo-virus and programmed to code functional fluorescence proteins after infecting the host cells. To get specific sequence and charanterization information, please see the following Parts Pages.
Figure 7: List of validated parts and the features
Experiment Progress
Report on Oct. 17th, 2018
- Our team successfully validated that all the necessary constructs are produced by using electrophoresis (please refer to our Parts Pages).
- After completing the construction, our team shifted to the transfection into HEK293T cells for pseudo-virus production. Using lipofection, the constructs have been already introduced into the cells and the pseudo-viruses will be collected in a few days.
- After collecting the pseudo-viruses, they will be added to cultured Vero cells. Our team will test the infectivity by measuring the fluorescence intensity at the end.
- The whole results will be announced in Giant Jamboree, so please do not miss it!
Our Goal
We try to validate that the pseudo-viruses are produced, and they can infect the host cells. Making the most of our system and lab experience, our team will make a kit to identify which type your target patient was infected with before. As you can see in Fig. 8, if the patient was infected with type II virus before, type II-specific antibodies in blood serum decrease the infectivity of type II pseudo-virus. As a result, fluorescence protein programmed in the pseudo-virus would not be coded so much due to the decrease in the number of infectious viruses. Thus, you can identify the infection experience and its type by measuring or observing the fluorescence intensity for each type/color.
Figure 8: Mechanism of colorimetric type detection system with different fluorescence proteins
Feedback to Modeling
Since our detection system enables us to collect more samling data in many areas quickly and with low cost, our prediction model can be more precise thanks to the increase in the consensus time-scale data of dengue-affected patients and serotype ratio.Biosafety
As you can see in Fig. 9, on native virus genome, structural genes and non-structural genes are integrated on the same sequence. Thus, the whole genome are replicated and that make viruses possible to replicate themselves in host cells. However, as you can see our construct design in Fig. 10, structural and non-structural regions are splitted so that the pseudo-virus cannot replicate themselves in host cells because RNA polymerase from non-structural V gene cannot replicate structural genes. To sum up, our system starts and ends in one place and doesn't harm environment.
Figure 9: Infection process of native virus and production of infectious pseudo-virus
Figure 10: Infection process of our pseudo-virus for validating biosafety