(17 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
<html> | <html> | ||
+ | <style> | ||
+ | .column_One { | ||
+ | float: left; | ||
+ | width: 10%; | ||
+ | padding: 10px; | ||
+ | } | ||
+ | |||
+ | .column_Two { | ||
+ | float: left; | ||
+ | width: 75%; | ||
+ | padding: 10px; | ||
+ | } | ||
+ | |||
+ | .row{ | ||
+ | margin-left:20%; | ||
+ | } | ||
+ | |||
+ | .row:after { | ||
+ | content: ""; | ||
+ | display: table; | ||
+ | clear: both; | ||
+ | } | ||
+ | |||
+ | article{ | ||
+ | color:black; | ||
+ | line-heigth: 2em; | ||
+ | font-size:20px; | ||
+ | padding-top:3%; | ||
+ | } | ||
+ | |||
+ | a{ | ||
+ | color:blue; | ||
+ | font-weight: bold; | ||
+ | } | ||
+ | |||
+ | </style> | ||
<head> | <head> | ||
Line 58: | Line 94: | ||
− | + | This is <b>nanoFactory</b> - a combined system to clean up mining drainage and produce nanoparticles. | |
− | + | ||
− | <b> | + | |
− | + | ||
− | + | ||
+ | <br/> | ||
+ | During our project we were able to demonstrate accumulation of metal ions in <i>Escherichia coli</i>, while increasing the tolerance towards such ions. We engineered ferritin to enable iron, silver and gold nanoparticle formation. Furthermore, we demonstarted that nanoparticles could be used to print conductive paths. | ||
+ | <figure role="group"> <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/0/09/T--Bielefeld-CeBiTec--cg--Demonstrate_Overview.png"> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</figure> | </figure> | ||
− | |||
− | |||
− | < | + | </article> |
− | + | ||
− | |||
− | + | <div | |
− | |||
+ | <h2 id="Achievements" style="color:white; font-size:30px; margin-top:5%;">Achievements</h2> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <div class="row"> | ||
+ | <div class="column_One"> | ||
+ | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Improve"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 1. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Improve">Construction of a mutated human ferritin which is able to build silver and gold nanoparticles</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="column_One"> | ||
+ | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Public_Engagement"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 2. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Public_Engagement">Outreach on raising awareness on "Dual Use Research of Concern" issues in iGEM and to scientists worldwide.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
− | < | + | <div class="row"> |
− | < | + | <div class="column_One"> |
− | < | + | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Ferritin_Results"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> |
− | </ | + | </div> |
− | </ | + | <div class="column_Two"> |
+ | <article> | ||
+ | 3. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Ferritin_Results">We heterologous expressed ferritin to enhance iron nanoparticle formation in <i>Escherichia coli</i>.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="column_One"> | ||
+ | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Accumulation_Results"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 4. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Accumulation_Results">Integration and characterization of metal importers to accumulate metal ions in <i>Escherichia coli cells</i>.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
− | < | + | <div class="row"> |
− | < | + | <div class="column_One"> |
− | < | + | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Toxicity_Results#!"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> |
− | </ | + | </div> |
− | </ | + | <div class="column_Two"> |
+ | <article> | ||
+ | 5. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Toxicity_Results#!">Cloning and characterization of several proteins which are able to reduce reactive oxygen species, for example caused by metal ions.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="column_One"> | ||
+ | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Software"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 6. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Software">Development of a software for the prediction of siRNAs and RNAi for gene silencing in prokaryotes.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
− | < | + | <div class="row"> |
+ | <div class="column_One"> | ||
+ | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Hardware"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 7. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Hardware">Development of a cross-flow bioreactor hardware to filter hugh amounts of mining drainage while accumulate metal ions in <i>Escherichia coli</i>.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="column_One"> | ||
+ | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Model"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 8. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Model">Integrated modeling on toxicity through metal ions and hardware improvement.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
− | + | <div class="row"> | |
− | + | <div class="column_One"> | |
− | + | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Design"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | |
− | < | + | </div> |
− | + | <div class="column_Two"> | |
+ | <article> | ||
+ | 9. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Design">Development of a siRNA target vector system for effective silencing in prokaryotes.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="column_One"> | ||
+ | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Measurement"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 10. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Measurement">Construction of a promoter and RBS library and a testing vector to enable the comparison through normalization on a second reporter.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="column_One"> | ||
+ | <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Human_Practices"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 11. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Human_Practices">Dialogue to stakeholder and scientific experts throughout the whole project.</a> | ||
+ | </article> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
+ | <div class="column_One"> | ||
+ | <img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"> | ||
+ | </div> | ||
+ | <div class="column_Two"> | ||
+ | <article> | ||
+ | 12. <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Collaborations">Creating achievements together with the great iGEM community.</a> | ||
</article> | </article> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
<hr style="width:60%"></hr> | <hr style="width:60%"></hr> | ||
<button onclick="myFunction()" class="refbtn"> References ▾</button> | <button onclick="myFunction()" class="refbtn"> References ▾</button> |
Latest revision as of 02:22, 18 October 2018
Demonstrate
During our project we were able to demonstrate accumulation of metal ions in Escherichia coli, while increasing the tolerance towards such ions. We engineered ferritin to enable iron, silver and gold nanoparticle formation. Furthermore, we demonstarted that nanoparticles could be used to print conductive paths.
Achievements
BRahman, K., Khan, A., Muhammad, N. M., Jo, J., & Choi, K. H. (2012). Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing. Journal of Micromechanics and Microengineering, 22(6), 065012.
Liu, Y., Pharr, M., & Salvatore, G. A. (2017). Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS nano, 11(10), 9614-9635.
Park, B. K., Kim, D., Jeong, S., Moon, J., & Kim, J. S. (2007). Direct writing of copper conductive patterns by ink-jet printing. Thin solid films, 515(19), 7706-7711.
Raut, N. C., & Al-Shamery, K. (2018). Inkjet printing metals on flexible materials for plastic and paper electronics. Journal of Materials Chemistry C, 6(7), 1618-1641.
Rothschild, L. J., Koehne, J., Gandhiraman, R., Navarrete, J., & Spangle, D. (2017). Urban biomining meets printable electronics: end-to-end at destination biological recycling and reprinting.
Lim, S., Joyce, M., Fleming, P. D., Aijazi, A. T., & Atashbar, M. (2013). Inkjet printing and sintering of nano-copper ink. Journal of Imaging Science and Technology, 57(5), 50506-1.
Joo, S. J., Park, S. H., Moon, C. J., & Kim, H. S. (2015). A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS applied materials & interfaces, 7(10), 5674-5684.
Jeong, S., Song, H. C., Lee, W. W., Lee, S. S., Choi, Y., Son, W., ... & Ryu, B. H. (2011). Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate. Langmuir, 27(6), 3144-3149.
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., & Manuspiya, H. (2012). Synthesis of colloidal silver nanoparticles for printed electronics. Comptes Rendus Chimie, 15(6), 539-544.
Karthik, P. S., & Singh, S. P. (2015). Copper conductive inks: synthesis and utilization in flexible electronics. RSC Advances, 5(79), 63985-64030.
Kawahara, Y., Hodges, S., Cook, B. S., Zhang, C., & Abowd, G. D. (2013, September). Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing (pp. 363-372). ACM.
Liu, Y., Pharr, M., & Salvatore, G. A. (2017). Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS nano, 11(10), 9614-9635.
Park, B. K., Kim, D., Jeong, S., Moon, J., & Kim, J. S. (2007). Direct writing of copper conductive patterns by ink-jet printing. Thin solid films, 515(19), 7706-7711.
Raut, N. C., & Al-Shamery, K. (2018). Inkjet printing metals on flexible materials for plastic and paper electronics. Journal of Materials Chemistry C, 6(7), 1618-1641.
Rothschild, L. J., Koehne, J., Gandhiraman, R., Navarrete, J., & Spangle, D. (2017). Urban biomining meets printable electronics: end-to-end at destination biological recycling and reprinting.
Lim, S., Joyce, M., Fleming, P. D., Aijazi, A. T., & Atashbar, M. (2013). Inkjet printing and sintering of nano-copper ink. Journal of Imaging Science and Technology, 57(5), 50506-1.
Joo, S. J., Park, S. H., Moon, C. J., & Kim, H. S. (2015). A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS applied materials & interfaces, 7(10), 5674-5684.
Jeong, S., Song, H. C., Lee, W. W., Lee, S. S., Choi, Y., Son, W., ... & Ryu, B. H. (2011). Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate. Langmuir, 27(6), 3144-3149.
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., & Manuspiya, H. (2012). Synthesis of colloidal silver nanoparticles for printed electronics. Comptes Rendus Chimie, 15(6), 539-544.
Karthik, P. S., & Singh, S. P. (2015). Copper conductive inks: synthesis and utilization in flexible electronics. RSC Advances, 5(79), 63985-64030.
Kawahara, Y., Hodges, S., Cook, B. S., Zhang, C., & Abowd, G. D. (2013, September). Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing (pp. 363-372). ACM.