Line 143: | Line 143: | ||
A specially designed time regulation design shown in the graph below ensures that each chamber has the least amount of time staying unoccupied, and thus improving the reaction efficiency and saving energy, since only chamber B needs to be heated throughout the complete round of reaction. The traditional time for one fixed amount of materials to transform completely is seventy-two hours per unit while using our new plan, we simply need fifty-four hours per unit and can increase the efficiency by 33%. | A specially designed time regulation design shown in the graph below ensures that each chamber has the least amount of time staying unoccupied, and thus improving the reaction efficiency and saving energy, since only chamber B needs to be heated throughout the complete round of reaction. The traditional time for one fixed amount of materials to transform completely is seventy-two hours per unit while using our new plan, we simply need fifty-four hours per unit and can increase the efficiency by 33%. | ||
<br> | <br> | ||
− | <img src="https://static.igem.org/mediawiki/2018/8/8a/T--SDSZ_China--35.jpg" class="rounded mx-auto d-block" alt="..." width="70%" height="70%" style="Padding:0px; | + | <img src="https://static.igem.org/mediawiki/2018/8/8a/T--SDSZ_China--35.jpg" class="rounded mx-auto d-block" alt="..." width="70%" height="70%" style="Padding:0px;align:center;"><br> |
After filling all of the chambers with low concentrated alkali solution, the reaction cycle starts. When one round of 24-hour reaction is completed inside chamber A or C, the lobster shells are abstracted from the chamber and put into chamber B through the control of timers and transport units. The materials react inside chamber B for a heated reaction of 4 hours or a non-heated reaction for 12 hours. The leftover of the reaction inside chamber A and C are provided time to fully deposit, and the sediments are extracted after a 12-hour deposition as chemical fertilizer while the liquid supernatant remains inside the tanks to react with a new round of lobster shells. Meanwhile, when the transformation inside chamber B is finished, the products of the reaction are abstracted and transferred into the next unit of the machine while the leftover of the reaction keeps on depositing for 8 or 12 hours (depending on if the former reaction is heated) until solid sediment can be fully set apart and abstracted from the liquid supernatant.<br><br> | After filling all of the chambers with low concentrated alkali solution, the reaction cycle starts. When one round of 24-hour reaction is completed inside chamber A or C, the lobster shells are abstracted from the chamber and put into chamber B through the control of timers and transport units. The materials react inside chamber B for a heated reaction of 4 hours or a non-heated reaction for 12 hours. The leftover of the reaction inside chamber A and C are provided time to fully deposit, and the sediments are extracted after a 12-hour deposition as chemical fertilizer while the liquid supernatant remains inside the tanks to react with a new round of lobster shells. Meanwhile, when the transformation inside chamber B is finished, the products of the reaction are abstracted and transferred into the next unit of the machine while the leftover of the reaction keeps on depositing for 8 or 12 hours (depending on if the former reaction is heated) until solid sediment can be fully set apart and abstracted from the liquid supernatant.<br><br> |
Revision as of 02:39, 18 October 2018