Difference between revisions of "Team:British Columbia"

Line 21: Line 21:
 
  font-size: 17px;
 
  font-size: 17px;
 
  padding-left: 60px;
 
  padding-left: 60px;
  padding-right: 70px;">Dividing metabolism amongst microbial communities has shown huge potential for the large-scale production of chemical products. Unfortunately, optimizing the population dynamics of the individual strain modules remains a challenge (Jones & Wang, 2018). Our goal is to improve the production of naringenin and its pharmaceutically significant derivatives, which have anti-cancer and anti-inflammatory properties, by distributing the synthesis of a naringenin derivative between two E. coli strains and optimizing their relative proportions in co-culture. One strain will produce naringenin from glucose and the second strain will create the naringenin derivative. We will regulate the ratio of the two strains using a biosensor and a toehold switch. This will couple cell growth with the concentration of naringenin, allowing the co-culture to self-optimize and increase naringenin production. Using our system, we will have demonstrated a novel way to optimize microbial polycultures for the synthesis of metabolically complex compounds.</p>
+
  padding-right: 60px;">Dividing metabolism amongst microbial communities has shown huge potential for the large-scale production of chemical products. Unfortunately, optimizing the population dynamics of the individual strain modules remains a challenge (Jones & Wang, 2018). Our goal is to improve the production of naringenin and its pharmaceutically significant derivatives, which have anti-cancer and anti-inflammatory properties, by distributing the synthesis of a naringenin derivative between two E. coli strains and optimizing their relative proportions in co-culture. One strain will produce naringenin from glucose and the second strain will create the naringenin derivative. We will regulate the ratio of the two strains using a biosensor and a toehold switch. This will couple cell growth with the concentration of naringenin, allowing the co-culture to self-optimize and increase naringenin production. Using our system, we will have demonstrated a novel way to optimize microbial polycultures for the synthesis of metabolically complex compounds.</p>
  
  
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 02:19, 20 August 2018


UBC iGEM 2018: Distributed Metabolic Pathway of Naringenin

Dividing metabolism amongst microbial communities has shown huge potential for the large-scale production of chemical products. Unfortunately, optimizing the population dynamics of the individual strain modules remains a challenge (Jones & Wang, 2018). Our goal is to improve the production of naringenin and its pharmaceutically significant derivatives, which have anti-cancer and anti-inflammatory properties, by distributing the synthesis of a naringenin derivative between two E. coli strains and optimizing their relative proportions in co-culture. One strain will produce naringenin from glucose and the second strain will create the naringenin derivative. We will regulate the ratio of the two strains using a biosensor and a toehold switch. This will couple cell growth with the concentration of naringenin, allowing the co-culture to self-optimize and increase naringenin production. Using our system, we will have demonstrated a novel way to optimize microbial polycultures for the synthesis of metabolically complex compounds.