Line 52: | Line 52: | ||
<article> | <article> | ||
− | In our project we introduce RNA interference (RNAi) and silencing with small interfering (si)RNAs as an alternative to CRISPR/Cas. To | + | In our project we introduce RNA interference (RNAi) and silencing with small interfering (si)RNAs as an alternative to CRISPR/Cas. To use siRNA as silencing agents for the gene-of -interest we propose a two-step design process. At first potential siRNAs for prokaryotic organisms must be designed. In the second step the silencing effect of these siRNAs can be validated by our siRNA vector system <a href"https://2018.igem.org/Team:Bielefeld-CeBiTec/siRNA">Tace.</a> To facilitate the initial siRNA design step, we developed a siRNA construction tool, which can find possible siRNAs for a given gene sequence and calculate their gene silencing probability. It consists of the three modules siRNAs for RNAi, siRNA, and check siRNA. Obtained siRNAs are perfectly compatible with our siRNA vector system. To the best of our knowledge, this is the first tool dedicated to predicting customized siRNA for the application in prokaryotes. This Python tool comes in two versions: a command line application and an easy-to-use graphical interface. |
</article> | </article> | ||
Line 58: | Line 58: | ||
<article> | <article> | ||
− | siRNAs are small single- or double-stranded RNAs with an average length of 21-25 nucleotides. They are non-coding RNAs which can bind a specific complementary coding mRNA and silence its function. During RNAi siRNAs are loaded to Argonaute proteins, which carry out the repression | + | siRNAs are small single- or double-stranded RNAs with an average length of 21-25 nucleotides. They are non-coding RNAs which can bind a specific complementary coding mRNA and silence its function. During eukaryotic RNAi siRNAs are loaded to Argonaute proteins, which carry out the repression, either by blocking mRNA translation or by degrading the mRNA (Siomi and Siomi, 2009). More about the siRNAs and the mechanisms are found <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/siRNA">here.<a> |
</article> | </article> | ||
Line 64: | Line 64: | ||
<article> | <article> | ||
− | In 2012 the <a href="https://2012.igem.org/Team:SYSU-Software/Models#pp2">SYSU-Software | + | In 2012 the <a href="https://2012.igem.org/Team:SYSU-Software/Models#pp2">iGEM team SYSU-Software</a> integrated an siRNA cDNA designer as a small part in their project. siRNAs designed with this tool were applicable in eukaryotic organisms. They included two different design methods: Tom Tuschl’s method and Rational siRNA design. |
</article> | </article> | ||
Line 75: | Line 75: | ||
<article> | <article> | ||
− | Tom Tuschl’s method focuses | + | Tom Tuschl’s method focuses mainly on the existence of 5’ and 3’ ‘TT’ overhangs (Figure X)(Elbashir et al., 2001). These are not compatible with overhangs and scaffold sequences necessary for the prokaryotic mechanisms. Therefore, we decided to use the Ui-Tei rules as an alternative design method (Naito and Ui-Tei, 2012). Furthermore, we adapted the Rational siRNA design since it was more suitable for our application (Reynolds et al., 2004). Both design rules apply only to the 19nt long target binding sequence. |
</article> | </article> | ||
Line 129: | Line 129: | ||
The melting Temperature Tm is calculated as followed (Kibbe, 2007): | The melting Temperature Tm is calculated as followed (Kibbe, 2007): | ||
− | $$ T_m = 79.8 + (18.5 * log_{10}[Na^+]) + (58.4 * [\text{G/C content}]) + (11.8 * [\text{G/C content}]^2) - \left(\frac{820}{\text{[G/C content]}}\right)$$ | + | $$ T_m = 79.8 + (18.5 * log_{10}[Na^+]) + (58.4 * [\text{G/C content}]) \\+ (11.8 * [\text{G/C content}]^2) - \left(\frac{820}{\text{[G/C content]}}\right)$$ |
− | |||
− | |||
</article> | </article> | ||
Revision as of 08:59, 17 October 2018
siRCon - A siRNA Constructor
siRNAS short introduction
Choosing appropriate design methods
Rational siRNA design
Rule | Score |
---|---|
30%-52% G/C content | +1 |
At least 3 'A/U' bases at positions 15-19 | +1 (for each 'A/U' base) |
Absence of internal repeats (\(T_m \lt 20\)) | +1 |
An 'A' base at position 3 | +1 |
An 'A' base at position 19 | +1 |
An 'U' base at position 19 | +1 |
A base other than 'G' or 'C' at 19 | -1 |
A base other than 'G' at position 13 | -1 |
Ui-Tei rule
- An ‘A’ or ‘T’ at position 19
- A ‘G’ or ‘C’ at position 1
- At least five ‘U’ or ‘A’ residues from positions 13 to 19
- No ‘GC’ stretch more than 9nt long
Calculating silencing probability
siRNA overhangs and scaffolds
Check siRNA
Command line application
Graphical Interface usage
1. siRNA for RNAi
- Insert gene sequence
- Choose Tace vector system (optionally)
- Constructions of siRNAs
- View resulting siRNAs (sense and antisense sequence) and their corresponding probability
- Decide if siRNAs should be saved with MicC scaffold (only if Tace is not used)
- Save results as FASTA file
2. siRNA for silencing
- Insert gene sequence
- Choose Tace vector system (optionally)
- Constructions of siRNAs
- View resulting siRNAs (sense and antisense sequence) and their corresponding probability
- Decide if siRNAs should be saved with MicC scaffold (only if Tace is not used)
- Decide if siRNAs should be saved with OmpA scaffold (only if Tace is not used)
- Save results as FASTA file
3. Check siRNA
- Insert gene sequence
- Insert siRNA sequences
- Choose method the siRNA was constructed for (siRNA for RNAi or siRNA for silencing)
- Choose if siRNA was constructed for Tace (optionally)
- Validation of entered siRNA for given target gene sequences
- View results
- Save results (optionally)