Line 153: | Line 153: | ||
Not only the sequences of possible effective siRNAs are to be determined and returned by the tool, but also the probability with which they are effective. This probability can be calculated with the help of Bayes’ theorem by calculating probabilities of dependent events. The following calculations and formular are based on Takasaki (2009). | Not only the sequences of possible effective siRNAs are to be determined and returned by the tool, but also the probability with which they are effective. This probability can be calculated with the help of Bayes’ theorem by calculating probabilities of dependent events. The following calculations and formular are based on Takasaki (2009). | ||
</br> | </br> | ||
− | The initial hypothesis is that the given siRNA effectively silences an mRNA. To perform the calculations a prior probability is necessary. The prior probability for effective gene silencing of mammalian genes can be obtained from former siRNA experiments and is approximately 0.1. Since we have no data on prokaryotic siRNAs, we use the same prior probability for our prediction. </br> | + | The initial hypothesis is that the given siRNA effectively silences an mRNA. To perform the calculations a prior probability is necessary. The prior probability for effective gene silencing of mammalian genes can be obtained from former siRNA experiments and is approximately 0.1 (Takasaki, 2009). Since we have no data on prokaryotic siRNAs, we use the same prior probability for our prediction. </br> |
The gene silencing probability can be described as: | The gene silencing probability can be described as: | ||
Revision as of 09:11, 17 October 2018
siRCon - A siRNA Constructor
siRNAS short introduction
Choosing appropriate design methods
Rational siRNA design
Rule | Score |
---|---|
30%-52% G/C content | +1 |
At least 3 'A/U' bases at positions 15-19 | +1 (for each 'A/U' base) |
Absence of internal repeats (\(T_m \lt 20\)) | +1 |
An 'A' base at position 3 | +1 |
An 'A' base at position 19 | +1 |
An 'U' base at position 19 | +1 |
A base other than 'G' or 'C' at 19 | -1 |
A base other than 'G' at position 13 | -1 |
Ui-Tei rule
- An ‘A’ or ‘T’ at position 19
- A ‘G’ or ‘C’ at position 1
- At least five ‘U’ or ‘A’ residues from positions 13 to 19
- No ‘GC’ stretch more than 9nt long
Calculating silencing probability
siRNA overhangs and scaffolds
Check siRNA
Command line application
Graphical Interface usage
1. siRNA for RNAi
- Insert gene sequence
- Choose Tace vector system (optionally)
- Constructions of siRNAs
- View resulting siRNAs (sense and antisense sequence) and their corresponding probability
- Decide if siRNAs should be saved with MicC scaffold (only if Tace is not used)
- Save results as FASTA file
2. siRNA for silencing
- Insert gene sequence
- Choose Tace vector system (optionally)
- Constructions of siRNAs
- View resulting siRNAs (sense and antisense sequence) and their corresponding probability
- Decide if siRNAs should be saved with MicC scaffold (only if Tace is not used)
- Decide if siRNAs should be saved with OmpA scaffold (only if Tace is not used)
- Save results as FASTA file
3. Check siRNA
- Insert gene sequence
- Insert siRNA sequences
- Choose method the siRNA was constructed for (siRNA for RNAi or siRNA for silencing)
- Choose if siRNA was constructed for Tace (optionally)
- Validation of entered siRNA for given target gene sequences
- View results
- Save results (optionally)