Line 58: | Line 58: | ||
</header> | </header> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; ">Alkane and MFC Modules</span></strong> | <strong><span style="font-family:Arial; ">Alkane and MFC Modules</span></strong> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; "> </span></strong> | <strong><span style="font-family:Arial; "> </span></strong> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; ">FBA </span></strong> | <strong><span style="font-family:Arial; ">FBA </span></strong> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
− | <span style="font-family:Arial">In the alkane degradation and MFC modules, we adopted Flux Balance Analysis (FBA) model to capture the relationship between different variables and characterize the theoretical maximum values of target outputs. The FBA model is widely used to simulate a genome-wide metabolic network, and the flux distribution between metabolites.</span><span style="font-family:Arial">  </span><span style="font-family:Arial">With this algorithm, it is possible to maximize an objective function</span><span style="font-family:Arial">  </span><span style="font-family:Arial">under a set of constraints provided by the user or the genome database, without specific enzyme kinetics inputs. By using FBA, we can analyse the alkane degradation pathway and electron generating reaction while taking into consideration of the complex metabolism network. This algorithm also helped us bypass the enzyme kinetics part, since little has been documented about the ASS enzyme complex in current literature. However, this method was limited to simulate equilibrium state only, and the theoretical limits are highly dependent on the database and constraints provided.</span><span style="font-family:Arial; color:#0000ff"><sup>[1]</sup></span><span style="font-family:Arial"> In our project, we used iSO783 as </span><em><span style="font-family:Arial; ">Shewanella Oneidensis</span></em><span style="font-family:Arial"> MR-1 metabolic model, and made adjustment upon it.</span><span style="font-family:Arial">  </span><span style="font-family:Arial">iSO783 is a widely-used </span><em><span style="font-family:Arial; ">S. Oneidensis</span></em><span style="font-family:Arial"> MR-1 model containing 774 reactions, and 783 genes. </span><span style="font-family:Arial; color:#0000ff"><sup>[2]</sup></span> | + | <span style="font-family:Arial">In the alkane degradation and MFC modules, we adopted Flux Balance Analysis (FBA) model to capture the relationship between different variables and characterize the theoretical maximum values of target outputs. The FBA model is widely used to simulate a genome-wide metabolic network, and the flux distribution between metabolites.</span><span style="font-family:Arial">  </span><span style="font-family:Arial">With this algorithm, it is possible to maximize an objective function</span><span style="font-family:Arial">  </span><span style="font-family:Arial">under a set of constraints provided by the user or the genome database, without specific enzyme kinetics inputs. By using FBA, we can analyse the alkane degradation pathway and electron generating reaction while taking into consideration of the complex metabolism network. This algorithm also helped us bypass the enzyme kinetics part, since little has been documented about the ASS enzyme complex in current literature. However, this method was limited to simulate equilibrium state only, and the theoretical limits are highly dependent on the database and constraints provided.</span><span style="font-family:Arial; color:#0000ff"><sup>[1]</sup></span><span style="font-family:Arial"> In our project, we used iSO783 as </span><em><span style="font-family:Arial; "><i>Shewanella Oneidensis</i></span></em><span style="font-family:Arial"> MR-1 metabolic model, and made adjustment upon it.</span><span style="font-family:Arial">  </span><span style="font-family:Arial">iSO783 is a widely-used </span><em><span style="font-family:Arial; "><i>S. Oneidensis</i></span></em><span style="font-family:Arial"> MR-1 model containing 774 reactions, and 783 genes. </span><span style="font-family:Arial; color:#0000ff"><sup>[2]</sup></span> |
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial">Hopefully, this mathematical modelling can provide an insight into the</span><span style="font-family:Arial">  </span><span style="font-family:Arial">interdependence of conditional factors and serve as a guide of our experimental design.</span><span style="font-family:Arial">  </span> | <span style="font-family:Arial">Hopefully, this mathematical modelling can provide an insight into the</span><span style="font-family:Arial">  </span><span style="font-family:Arial">interdependence of conditional factors and serve as a guide of our experimental design.</span><span style="font-family:Arial">  </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; "> </span></strong> | <strong><span style="font-family:Arial; "> </span></strong> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; ">Extracellular Electron Transport</span></strong> | <strong><span style="font-family:Arial; ">Extracellular Electron Transport</span></strong> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:12pt"> |
− | <span style="font-family:Arial">In the MFC, </span><em><span style="font-family:Arial; ">S. oneidensis</span></em><span style="font-family:Arial"> MR-1 has been reported to transport electrons to electrode in three ways, (1) direct electron transport (DET) mode based on the c-type cytochromes and conductive pili called nanowires, (2) self-secreted flavins to convey electrons and 3) the mediated electron transfer (MET) mode, which relies on exogenous mediators </span><span style="font-family:Arial; color:#0000ff"><sup>[1]</sup></span><span style="font-family:Arial">. </span><span style="font-family:Arial; color:#333333; background-color:#ffffff"> </span><span style="font-family:Arial">The DET route, which is a more dominant transport mode without the help of exogenous mediators, is modelled and studied. As reviewed in the MFC part of our wiki, the DET route depends on the c-type cytochrome (MtrC and OmcA) in the cytoplasmic membrane interacting with the electrode. It can also use nanowires to transfer electrons to the electrode that is located distantly from the cells.</span> | + | <span style="font-family:Arial">In the MFC, </span><em><span style="font-family:Arial; "><i>S. oneidensis</span></em><span style="font-family:Arial"> MR-1</i> has been reported to transport electrons to electrode in three ways, (1) direct electron transport (DET) mode based on the c-type cytochromes and conductive pili called nanowires, (2) self-secreted flavins to convey electrons and 3) the mediated electron transfer (MET) mode, which relies on exogenous mediators </span><span style="font-family:Arial; color:#0000ff"><sup>[1]</sup></span><span style="font-family:Arial">. </span><span style="font-family:Arial; color:#333333; background-color:#ffffff"> </span><span style="font-family:Arial">The DET route, which is a more dominant transport mode without the help of exogenous mediators, is modelled and studied. As reviewed in the MFC part of our wiki, the DET route depends on the c-type cytochrome (MtrC and OmcA) in the cytoplasmic membrane interacting with the electrode. It can also use nanowires to transfer electrons to the electrode that is located distantly from the cells.</span> |
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:12pt"> |
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial">In the iSO783, we considered the reaction flux of CYOO2 as our optimization objective as it involved in the reduction of a type of cytochrome c protein, denoted as Cco (SO2361 and SO2362 and SO2363 and SO2364) or Cyco (SO4606 and SO4607 and SO4609) in iSO783). In such case, the reaction flux of CYOO2 is taken to estimate the DET flux.</span> | <span style="font-family:Arial">In the iSO783, we considered the reaction flux of CYOO2 as our optimization objective as it involved in the reduction of a type of cytochrome c protein, denoted as Cco (SO2361 and SO2362 and SO2363 and SO2364) or Cyco (SO4606 and SO4607 and SO4609) in iSO783). In such case, the reaction flux of CYOO2 is taken to estimate the DET flux.</span> | ||
</p> | </p> | ||
Line 91: | Line 91: | ||
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style= | + | <p style= text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; ">DET- Lactate </span></strong> | <strong><span style="font-family:Arial; ">DET- Lactate </span></strong> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
− | <span style="font-family:Arial">As noticed the ability of </span><em><span style="font-family:Arial; ">S. oneidensis</span></em><span style="font-family:Arial"> MR-1 utilizing lactate to generate electricity </span><span style="font-family:Arial; color:#0000ff"><sup>[3]</sup></span><span style="font-family:Arial">, we first examined the FBA model using lactate as the carbon source for electricity generation. We examined the effect of varying lactate uptake flux on two separate objectives, i.e. maximizing biomass growth and maximizing DET flux. We assume 5% of maximum growth as the boundary of biomass growth flux, which would be the minimum viable growth rates in practice as described by Mao </span><span style="font-family:Arial; color:#0000ff"><sup>[4]</sup></span><span style="font-family:Arial">. </span> | + | <span style="font-family:Arial">As noticed the ability of </span><em><span style="font-family:Arial; "><i>S. oneidensis</i></span></em><span style="font-family:Arial"> MR-1 utilizing lactate to generate electricity </span><span style="font-family:Arial; color:#0000ff"><sup>[3]</sup></span><span style="font-family:Arial">, we first examined the FBA model using lactate as the carbon source for electricity generation. We examined the effect of varying lactate uptake flux on two separate objectives, i.e. maximizing biomass growth and maximizing DET flux. We assume 5% of maximum growth as the boundary of biomass growth flux, which would be the minimum viable growth rates in practice as described by Mao </span><span style="font-family:Arial; color:#0000ff"><sup>[4]</sup></span><span style="font-family:Arial">. </span> |
</p> | </p> | ||
<p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | ||
Line 103: | Line 103: | ||
<center><img src="https://static.igem.org/mediawiki/2018/thumb/a/a5/T--Hong_Kong_HKUST--DET_Lac.png/739px-T--Hong_Kong_HKUST--DET_Lac.png" width="563" height="417" alt="" ></center> | <center><img src="https://static.igem.org/mediawiki/2018/thumb/a/a5/T--Hong_Kong_HKUST--DET_Lac.png/739px-T--Hong_Kong_HKUST--DET_Lac.png" width="563" height="417" alt="" ></center> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:center; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial"><b>Figure 4.</b> The effect of lactate on maximum direct electron transfer(DET) flux of <i> Shewanella</i> utilizing lactate at viable growth flux boundary</span> | <span style="font-family:Arial"><b>Figure 4.</b> The effect of lactate on maximum direct electron transfer(DET) flux of <i> Shewanella</i> utilizing lactate at viable growth flux boundary</span> | ||
</p> | </p> | ||
Line 109: | Line 109: | ||
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial">Figure 4 shows that the DET flux reached a plateau at 81.68 mmol/gDW/h as lactate uptake flux increased. An upper bound existed such that increasing lactate uptake would no longer increase the electricity generation.</span> | <span style="font-family:Arial">Figure 4 shows that the DET flux reached a plateau at 81.68 mmol/gDW/h as lactate uptake flux increased. An upper bound existed such that increasing lactate uptake would no longer increase the electricity generation.</span> | ||
</p> | </p> | ||
Line 118: | Line 118: | ||
<center><img src="https://static.igem.org/mediawiki/2018/thumb/4/48/T--Hong_Kong_HKUST--DET_Biomass.png/755px-T--Hong_Kong_HKUST--DET_Biomass.png" width="550" height="439" alt="" ></center> | <center><img src="https://static.igem.org/mediawiki/2018/thumb/4/48/T--Hong_Kong_HKUST--DET_Biomass.png/755px-T--Hong_Kong_HKUST--DET_Biomass.png" width="550" height="439" alt="" ></center> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:center; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial"><b>Figure 5.</b> The trade off relationship between direct electron transfer(DET) flux and biomass growth flux when lactate uptake is set as constant </span> | <span style="font-family:Arial"><b>Figure 5.</b> The trade off relationship between direct electron transfer(DET) flux and biomass growth flux when lactate uptake is set as constant </span> | ||
</p> | </p> | ||
Line 124: | Line 124: | ||
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
− | <span style="font-family:Arial">Noted that the biomass growth is driven to its lower bound when the optimization objective is set as DET flux, we studied the relationship between DET flux with biomass flux at constant lactate input. In figure 5, the DET flux first sustained at 81.68 mmol/gDW/h but then decreased when biomass flux increased beyond 0.164h</span><span style="font-family:Arial; font-size: | + | <span style="font-family:Arial">Noted that the biomass growth is driven to its lower bound when the optimization objective is set as DET flux, we studied the relationship between DET flux with biomass flux at constant lactate input. In figure 5, the DET flux first sustained at 81.68 mmol/gDW/h but then decreased when biomass flux increased beyond 0.164h</span><span style="font-family:Arial; font-size:13pt; "><sup>-1</sup></span><span style="font-family:Arial">. This implies the electricity generation could possibly be maximized when below a certain growth rate, however, higher growth rate could possibly decrease the electricity generation.</span> |
</p> | </p> | ||
<p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | ||
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
− | <strong><span style="font-family:Arial; ">Shewanella Growth in Hexane</span></strong> | + | <strong><span style="font-family:Arial; "><i>Shewanella</i> Growth in Hexane</span></strong> |
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<center><img src="https://static.igem.org/mediawiki/2018/b/b1/T--Hong_Kong_HKUST--f6.png" width="532" height="415" alt="" ></center> | <center><img src="https://static.igem.org/mediawiki/2018/b/b1/T--Hong_Kong_HKUST--f6.png" width="532" height="415" alt="" ></center> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:center; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial"><b>Figure 6.</b> Maximum growth flux of <i>Shewanella</i> uptaking hexane under aerobic and anaerobic condition</span> | <span style="font-family:Arial"><b>Figure 6.</b> Maximum growth flux of <i>Shewanella</i> uptaking hexane under aerobic and anaerobic condition</span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:12pt"> |
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial">Figure 6 shows the maximized growth flux generated by FBA model for aerobic and anaerobic conditions. Aerobic condition is set as oxygen flux=0, fumarate flux lower bound=-20.42mmol/gDW/h,acetate flux upper bound=3.134mmol/gDW/h, pyruvate flux upper bound=0.872mmol/gDW/h, and hexane flux ranges from -5mmol/gDW/h to zero. Aerobic condition is set as oxygen flux lower bound=20.42mmol/gDW/h</span> | <span style="font-family:Arial">Figure 6 shows the maximized growth flux generated by FBA model for aerobic and anaerobic conditions. Aerobic condition is set as oxygen flux=0, fumarate flux lower bound=-20.42mmol/gDW/h,acetate flux upper bound=3.134mmol/gDW/h, pyruvate flux upper bound=0.872mmol/gDW/h, and hexane flux ranges from -5mmol/gDW/h to zero. Aerobic condition is set as oxygen flux lower bound=20.42mmol/gDW/h</span> | ||
</p> | </p> | ||
Line 148: | Line 148: | ||
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
− | <span style="font-family:Arial">In this part, we used FBA to generate the maximized growth flux of </span><em><span style="font-family:Arial; ">Shewanella oneidensis</span></em><span style="font-family:Arial"> MR-1 when providing hexane as energy source. Reaction constraints were set based on literature </span><span style="font-family:Arial; color:#0000ff"><sup>[5]</sup></span><span style="font-family:Arial"> values and genome database was adjusted to suit our engineered construct by adding the alkane degradation reactions. Results show that the maximized growth under aerobic condition is around 0.513 h</span><span style="font-family:Arial; font-size:8pt; "><sup>-1</sup></span><span style="font-family:Arial"> , while the anaerobic growth flux is around 0.298h</span><span style="font-family:Arial; font-size:8pt; "><sup>-1 </sup></span><span style="font-family:Arial">, both enough to sustain growth. This means theoretically, </span><em><span style="font-family:Arial; ">Shewanella oneidensis</span></em><span style="font-family:Arial"> MR-1 is able to grow in a hexane-containing media without provision of lactate or glucose under both aerobic and anaerobic conditions. </span> | + | <span style="font-family:Arial">In this part, we used FBA to generate the maximized growth flux of </span><em><span style="font-family:Arial; ">Shewanella oneidensis</span></em><span style="font-family:Arial"> MR-1 when providing hexane as energy source. Reaction constraints were set based on literature </span><span style="font-family:Arial; color:#0000ff"><sup>[5]</sup></span><span style="font-family:Arial"> values and genome database was adjusted to suit our engineered construct by adding the alkane degradation reactions. Results show that the maximized growth under aerobic condition is around 0.513 h</span><span style="font-family:Arial; font-size:8pt; "><sup>-1</sup></span><span style="font-family:Arial"> , while the anaerobic growth flux is around 0.298h</span><span style="font-family:Arial; font-size:8pt; "><sup>-1 </sup></span><span style="font-family:Arial">, both enough to sustain growth. This means theoretically, </span><em><span style="font-family:Arial; "><i>Shewanella oneidensis</span></em><span style="font-family:Arial"> MR-1</i> is able to grow in a hexane-containing media without provision of lactate or glucose under both aerobic and anaerobic conditions. </span> |
</p> | </p> | ||
Line 164: | Line 164: | ||
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; ">Maximum current generation and power output</span></strong> | <strong><span style="font-family:Arial; ">Maximum current generation and power output</span></strong> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial; color:#222222; background-color:#ffffff">Current is given by the derivative of the electric charge over time. </span><span style="font-family:Arial">The electron flux can be converted to current using Faraday’s constant 96485 C/mol</span> | <span style="font-family:Arial; color:#222222; background-color:#ffffff">Current is given by the derivative of the electric charge over time. </span><span style="font-family:Arial">The electron flux can be converted to current using Faraday’s constant 96485 C/mol</span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<center><img src="https://static.igem.org/mediawiki/2018/b/bc/T--Hong_Kong_HKUST--f6-2.png" width="660" height="72" alt="" ></center> | <center><img src="https://static.igem.org/mediawiki/2018/b/bc/T--Hong_Kong_HKUST--f6-2.png" width="660" height="72" alt="" ></center> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
− | <span style="font-family:Arial">Given the maximum DET flux is 81.68mmol/gDW/h, therefore, the </span><em><span style="font-family:Arial; ">Shewanella oneidensis MR-1</span></em><span style="font-family:Arial"> is possible to generate current up to 2.189A/gDW.</span> | + | <span style="font-family:Arial">Given the maximum DET flux is 81.68mmol/gDW/h, therefore, the </span><em><span style="font-family:Arial; "><i>Shewanella oneidensis MR-1</i></span></em><span style="font-family:Arial"> is possible to generate current up to 2.189A/gDW.</span> |
</p> | </p> | ||
<p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | ||
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial">The upper limit of MFC cell voltage is calculated based on the difference of standard cell potential in the anode and cathode. The standard potential are summarized in the table. </span> | <span style="font-family:Arial">The upper limit of MFC cell voltage is calculated based on the difference of standard cell potential in the anode and cathode. The standard potential are summarized in the table. </span> | ||
</p> | </p> | ||
Line 196: | Line 196: | ||
</td> | </td> | ||
<td style="border-right-style:solid; border-right-width:1pt; border-left-style:solid; border-left-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-right-style:solid; border-right-width:1pt; border-left-style:solid; border-left-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style=" | + | <p style="text-align:justify; line-height:115%; widows:0; orphans:0; font-size:13pt"> |
<strong><span style="font-family:Arial; ">Redox couple</span></strong> | <strong><span style="font-family:Arial; ">Redox couple</span></strong> | ||
</p> | </p> | ||
</td> | </td> | ||
<td style="border-left-style:solid; border-left-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-left-style:solid; border-left-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; widows:0; orphans:0; font-size: | + | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; widows:0; orphans:0; font-size:13pt"> |
− | <strong><span style="font-family:Arial; ">E</span></strong><strong><span style="font-family:Arial; font-size: | + | <strong><span style="font-family:Arial; ">E</span></strong><strong><span style="font-family:Arial; font-size:13pt; "><sub>o</sub></span></strong><strong><span style="font-family:Arial; "> (V)</span></strong> |
</p> | </p> | ||
</td> | </td> | ||
Line 208: | Line 208: | ||
<tr> | <tr> | ||
<td style="border-top-style:solid; border-top-width:1pt; border-right-style:solid; border-right-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-top-style:solid; border-top-width:1pt; border-right-style:solid; border-right-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; widows:0; orphans:0; font-size: | + | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; widows:0; orphans:0; font-size:13pt"> |
<span style="font-family:Arial">Anode</span> | <span style="font-family:Arial">Anode</span> | ||
</p> | </p> | ||
</td> | </td> | ||
<td style="border-style:solid; border-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-style:solid; border-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
− | <span style="font-family:Arial">Cytochrome c (Fe</span><span style="font-family:Arial; font-size: | + | <span style="font-family:Arial">Cytochrome c (Fe</span><span style="font-family:Arial; font-size:13pt; "><sup>3+</sup></span><span style="font-family:Arial">) + e</span><span style="font-family:'Arial'; font-size:13pt; "><sup>−</sup></span><span style="font-family:'Arial Unicode MS'"> → Cytochrome c (Fe</span><span style="font-family:Arial; font-size:13pt; "><sup>2+</sup></span><span style="font-family:Arial">)</span> |
</p> | </p> | ||
</td> | </td> | ||
<td style="border-top-style:solid; border-top-width:1pt; border-left-style:solid; border-left-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-top-style:solid; border-top-width:1pt; border-left-style:solid; border-left-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; widows:0; orphans:0; font-size:13pt"> |
<span style="font-family:Arial">+0.254</span><span style="font-family:Arial; color:#0000ff"><sup>[6]</sup></span> | <span style="font-family:Arial">+0.254</span><span style="font-family:Arial; color:#0000ff"><sup>[6]</sup></span> | ||
</p> | </p> | ||
Line 225: | Line 225: | ||
<tr> | <tr> | ||
<td style="border-top-style:solid; border-top-width:1pt; border-right-style:solid; border-right-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-top-style:solid; border-top-width:1pt; border-right-style:solid; border-right-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; widows:0; orphans:0; font-size:13pt"> |
<span style="font-family:Arial">Cathode</span> | <span style="font-family:Arial">Cathode</span> | ||
</p> | </p> | ||
Line 231: | Line 231: | ||
<td style="border-style:solid; border-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-style:solid; border-width:1pt; padding:4.5pt; vertical-align:top"> | ||
<p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | ||
− | <span style="font-family:Arial">Ferricyanide [Fe(CN)</span><span style="font-family:Arial; font-size: | + | <span style="font-family:Arial">Ferricyanide [Fe(CN)</span><span style="font-family:Arial; font-size:13pt; "><sub>6</sub></span><span style="font-family:Arial">]</span><span style="font-family:'Arial'; font-size:13pt; "><sup>3−</sup></span><span style="font-family:Arial"> + e</span><span style="font-family:'Arial'; font-size:13pt; "><sup>−</sup></span><span style="font-family:'Arial'"> → Ferrocyanide [Fe(CN)</span><span style="font-family:Arial; font-size:13pt; "><sub>6</sub></span><span style="font-family:Arial">]</span><span style="font-family:'Arial'; font-size:13pt; "><sup>4−</sup></span> |
</p> | </p> | ||
</td> | </td> | ||
<td style="border-top-style:solid; border-top-width:1pt; border-left-style:solid; border-left-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-top-style:solid; border-top-width:1pt; border-left-style:solid; border-left-width:1pt; border-bottom-style:solid; border-bottom-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; widows:0; orphans:0; font-size: | + | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; widows:0; orphans:0; font-size:13pt"> |
<span style="font-family:Arial">+0.436</span><span style="font-family:Arial; color:#0000ff"><sup>[7]</sup></span> | <span style="font-family:Arial">+0.436</span><span style="font-family:Arial; color:#0000ff"><sup>[7]</sup></span> | ||
</p> | </p> | ||
Line 242: | Line 242: | ||
<tr> | <tr> | ||
<td style="border-top-style:solid; border-top-width:1pt; border-right-style:solid; border-right-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-top-style:solid; border-top-width:1pt; border-right-style:solid; border-right-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; widows:0; orphans:0; font-size:13pt"> |
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
Line 248: | Line 248: | ||
<td style="border-top-style:solid; border-top-width:1pt; border-right-style:solid; border-right-width:1pt; border-left-style:solid; border-left-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-top-style:solid; border-top-width:1pt; border-right-style:solid; border-right-width:1pt; border-left-style:solid; border-left-width:1pt; padding:4.5pt; vertical-align:top"> | ||
<p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | ||
− | <span style="font-family:Arial">O</span><span style="font-family:Arial; font-size:8pt; "><sub>2</sub></span><span style="font-family:Arial"> + 4H</span><span style="font-family:Arial; font-size: | + | <span style="font-family:Arial">O</span><span style="font-family:Arial; font-size:8pt; "><sub>2</sub></span><span style="font-family:Arial"> + 4H</span><span style="font-family:Arial; font-size:13pt; "><sup>+</sup></span><span style="font-family:Arial">+4e</span><span style="font-family:'Arial'; font-size:13pt; "><sup>−</sup></span><span style="font-family:'Arial'"> → 2H</span><span style="font-family:Arial; font-size:13pt; "><sub>2</sub></span><span style="font-family:Arial">O</span> |
</p> | </p> | ||
</td> | </td> | ||
<td style="border-top-style:solid; border-top-width:1pt; border-left-style:solid; border-left-width:1pt; padding:4.5pt; vertical-align:top"> | <td style="border-top-style:solid; border-top-width:1pt; border-left-style:solid; border-left-width:1pt; padding:4.5pt; vertical-align:top"> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; widows:0; orphans:0; font-size:13pt"> |
<span style="font-family:Arial">+0.51 </span><span style="font-family:Arial; color:#0000ff"><sup>[8]</sup></span> | <span style="font-family:Arial">+0.51 </span><span style="font-family:Arial; color:#0000ff"><sup>[8]</sup></span> | ||
</p> | </p> | ||
Line 264: | Line 264: | ||
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial">In the MFC design that uses ferricyanide as cathode, the maximum cell voltage would be 0.182V. If oxygen is used as cathode, the maximum cell voltage would be 0.256V. The maximum power output could be 0.398W/gDW in ferricyanide while 0.56W/gDW could be reached using oxygen as cathode.</span> | <span style="font-family:Arial">In the MFC design that uses ferricyanide as cathode, the maximum cell voltage would be 0.182V. If oxygen is used as cathode, the maximum cell voltage would be 0.256V. The maximum power output could be 0.398W/gDW in ferricyanide while 0.56W/gDW could be reached using oxygen as cathode.</span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style="; text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; ">Effect of fumarate </span></strong> | <strong><span style="font-family:Arial; ">Effect of fumarate </span></strong> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<center><img src="https://static.igem.org/mediawiki/2018/thumb/6/69/T--Hong_Kong_HKUST--DET_Hex.png/800px-T--Hong_Kong_HKUST--DET_Hex.png" width="644" height="492" alt="" ></center> | <center><img src="https://static.igem.org/mediawiki/2018/thumb/6/69/T--Hong_Kong_HKUST--DET_Hex.png/800px-T--Hong_Kong_HKUST--DET_Hex.png" width="644" height="492" alt="" ></center> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:center; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial"><b>Figure 7.</b> The effect of fumarate on maximum direct electron transfer(DET) flux of <i> Shewanella</i> utilizing hexane at viable growth flux boundary </span> | <span style="font-family:Arial"><b>Figure 7.</b> The effect of fumarate on maximum direct electron transfer(DET) flux of <i> Shewanella</i> utilizing hexane at viable growth flux boundary </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style="text-align:justify; line-height:115%; font-size:13pt"> |
− | <span style="font-family:Arial">In pursuit of an overall higher electron output, we tried to identify how the nutritional factors in culturing media affect DET flux and growth flux. Hexane concentration was found to play a minor role since the actual uptake flux was restricted to be low(around -6.04*10</span><span style="font-family:Arial; font-size: | + | <span style="font-family:Arial">In pursuit of an overall higher electron output, we tried to identify how the nutritional factors in culturing media affect DET flux and growth flux. Hexane concentration was found to play a minor role since the actual uptake flux was restricted to be low(around -6.04*10</span><span style="font-family:Arial; font-size:13pt; "><sup>-7 </sup></span><span style="font-family:Arial">mmol/gDW/h) by internal factors of the bacteria. </span> |
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
− | <span style="font-family:Arial">However, fumarate was found to be an essential factor since it affects for growth, DET, and hexane uptake. In figure 7, the blue curve shows a positive correlation between fumarate uptake and DET flux (with growth flux set to 5%), and DET achieves its maximum value 81.68mmol/gDW/h at a fumarate uptake flux of</span><span style="font-family:Arial">  </span><span style="font-family:Arial">8 mmol/gDW/h. The green curve is the corresponding growth flux when DET was optimized. Since DET and growth cannot be optimized simultaneously, we separately constructed the red curve to describe the relationship between growth flux and fumarate uptake when optimizing growth. The curve shows a positive correlation and growth flux achieves its maximum value 0.9408h</span><span style="font-family:Arial; font-size: | + | <span style="font-family:Arial">However, fumarate was found to be an essential factor since it affects for growth, DET, and hexane uptake. In figure 7, the blue curve shows a positive correlation between fumarate uptake and DET flux (with growth flux set to 5%), and DET achieves its maximum value 81.68mmol/gDW/h at a fumarate uptake flux of</span><span style="font-family:Arial">  </span><span style="font-family:Arial">8 mmol/gDW/h. The green curve is the corresponding growth flux when DET was optimized. Since DET and growth cannot be optimized simultaneously, we separately constructed the red curve to describe the relationship between growth flux and fumarate uptake when optimizing growth. The curve shows a positive correlation and growth flux achieves its maximum value 0.9408h</span><span style="font-family:Arial; font-size:13pt; "><sup>-1</sup></span><span style="font-family:Arial"> when fumarate uptake flux reaches 94 mmol/gDW/h.</span> |
</p> | </p> | ||
<p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | ||
Line 298: | Line 298: | ||
<span style="font-family:Arial">We also explored the difference of DET flux under aerobic and anaerobic condition. In anaerobic condition, we assumed fumarate as the electron acceptor. It is surprising that the DET flux is driven to extremely small negative value under anaerobic condition, while DET flux can reach 81.68mmol/gDW/h when oxygen flux is set as 20.42mmol/gDW/h according to literature</span><span style="font-family:Arial; color:#0000ff"><sup>[4]</sup></span><span style="font-family:Arial">. </span> | <span style="font-family:Arial">We also explored the difference of DET flux under aerobic and anaerobic condition. In anaerobic condition, we assumed fumarate as the electron acceptor. It is surprising that the DET flux is driven to extremely small negative value under anaerobic condition, while DET flux can reach 81.68mmol/gDW/h when oxygen flux is set as 20.42mmol/gDW/h according to literature</span><span style="font-family:Arial; color:#0000ff"><sup>[4]</sup></span><span style="font-family:Arial">. </span> | ||
</p> | </p> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<span style="font-family:Arial"> </span> | <span style="font-family:Arial"> </span> | ||
</p> | </p> | ||
Line 310: | Line 310: | ||
</div> | </div> | ||
</section> | </section> | ||
− | <p style=" | + | <p style=" text-align:justify; line-height:115%; font-size:13pt"> |
<strong><span style="font-family:Arial; ">References:</span></strong> | <strong><span style="font-family:Arial; ">References:</span></strong> | ||
</p> | </p> | ||
Line 318: | Line 318: | ||
</p> | </p> | ||
− | <ol type="1" style=" | + | <ol type="1" style=" padding-left:0pt" class="reference"> |
− | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size: | + | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size:13pt;text-align:justify"> |
Orth, J.D., Thiele, I. and Palsson, B.(2010). What is Flux Balance Analysis? <i>Nature Biotechnology</i>, [1112-9778], Volume:28, Issue:3, Page:245, doi:10.1038/nbt.1614 Available at https://www.nature.com/articles/nbt.1614 | Orth, J.D., Thiele, I. and Palsson, B.(2010). What is Flux Balance Analysis? <i>Nature Biotechnology</i>, [1112-9778], Volume:28, Issue:3, Page:245, doi:10.1038/nbt.1614 Available at https://www.nature.com/articles/nbt.1614 | ||
</li> | </li> | ||
Line 325: | Line 325: | ||
2012.igem.org. (2015). Team: NTU-Singapore/Modeling. [online] Available at: https://2015.igem.org/Team:NTU-Singapore/Modeling | 2012.igem.org. (2015). Team: NTU-Singapore/Modeling. [online] Available at: https://2015.igem.org/Team:NTU-Singapore/Modeling | ||
</li> | </li> | ||
− | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size: | + | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size:13pt;text-align:justify"> L. Mao and W. Verwoerd, "Theoretical exploration of optimal metabolic flux distributions for extracellular electron transfer by Shewanella oneidensis MR-1", <i>Biotechnology for Biofuels</i>, vol. 7, no. 1, 2014. |
</li> | </li> | ||
− | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size: | + | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size:13pt;text-align:justify;"> G. Newton, S. Mori, R. Nakamura, K. Hashimoto and K. Watanabe, "Analyses of Current-Generating Mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in Microbial Fuel Cells", <i>Applied and Environmental Microbiology</i>, vol. 75, no. 24, pp. 7674-7681, 2009. |
</li> | </li> | ||
− | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size: | + | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size:13pt;text-align:justify;"> L. Berthe-Corti and W. Ebenhöh, "A mathematical model of cell growth and alkane degradation in Wadden Sea sediment suspensions", <em>Biosystems</em>, vol. 49, no. 3, pp. 161-189, 1999. |
</li> | </li> | ||
<li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size:12pt;text-align:justify; "> <!--<span style="font-size:11pt; background-color:#fffff; color:gray" >-->B. Virdis, S. Freguia, R. Rozendal, K. Rabaey, Z. Yuan and J. Keller, "Microbial Fuel Cells", <em><!--<span style="font-size:10pt; color:#000000; background-color:#ffffff; color:gray;">-->Treatise on Water Science</em><!--<span style="font-size:11pt; color:#000000; background-color:#ffffff" color:gray;>-->, pp. 641-665, 2011.<!--</span>--> | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size:12pt;text-align:justify; "> <!--<span style="font-size:11pt; background-color:#fffff; color:gray" >-->B. Virdis, S. Freguia, R. Rozendal, K. Rabaey, Z. Yuan and J. Keller, "Microbial Fuel Cells", <em><!--<span style="font-size:10pt; color:#000000; background-color:#ffffff; color:gray;">-->Treatise on Water Science</em><!--<span style="font-size:11pt; color:#000000; background-color:#ffffff" color:gray;>-->, pp. 641-665, 2011.<!--</span>--> | ||
</li> | </li> | ||
− | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size: | + | <li style="margin-left:33.0pt; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size:13pt;text-align:justify; "> <!--<span style="font-size:10pt; background-color:#fffff; color:gray;">--> |
M. Pandurangachar, B. Kumara Swamy, B. Chandrashekar, Ongera Gilbert, Sathish Reddy and B. Sherigara, "Electrochemical Investigations of Potassium Ferricyanide and Dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate Modified Carbon Paste Electrode: A Cyclic Voltammetric Study",<!-- </span>--><em><!--<span style="font-size:10pt; color:#000000; background-color:#ffffff color:gray;">-->International Journal of Electrochemical Science<!--</span>--></em><!--<span style="font-size:10pt; color:#000000; background-color:#ffffff" color:gray;>-->, vol. 5, no. 8, pp. 1187-1202, 2010.<!--</span>--> | M. Pandurangachar, B. Kumara Swamy, B. Chandrashekar, Ongera Gilbert, Sathish Reddy and B. Sherigara, "Electrochemical Investigations of Potassium Ferricyanide and Dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate Modified Carbon Paste Electrode: A Cyclic Voltammetric Study",<!-- </span>--><em><!--<span style="font-size:10pt; color:#000000; background-color:#ffffff color:gray;">-->International Journal of Electrochemical Science<!--</span>--></em><!--<span style="font-size:10pt; color:#000000; background-color:#ffffff" color:gray;>-->, vol. 5, no. 8, pp. 1187-1202, 2010.<!--</span>--> | ||
</li> | </li> | ||
− | <li style="margin-left:33.0pt; text-align:justify; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size: | + | <li style="margin-left:33.0pt; text-align:justify; line-height:115%; padding-left:2.99pt; font-family:Arial; font-size:13pt;text-align:justify; "> <!--<span style="font-size:10pt; background-color:#fffff;color:gray;">-->U. Schröder, "Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency", <!--</span>--><em><!--<span style="font-size:10pt; color:grey; background-color:#ffffff">-->Phys. Chem. Chem. Phys.<!--</span>--></em><!--<span style="font-size:10pt; color:grey; background-color:#ffffff">-->, vol. 9, no. 21, pp. 2619-2629, 2007.<!--</span>--> |
</li> | </li> | ||
</ol> | </ol> |
Revision as of 18:14, 17 October 2018
Alkane and MFC Modules
FBA
In the alkane degradation and MFC modules, we adopted Flux Balance Analysis (FBA) model to capture the relationship between different variables and characterize the theoretical maximum values of target outputs. The FBA model is widely used to simulate a genome-wide metabolic network, and the flux distribution between metabolites. With this algorithm, it is possible to maximize an objective function under a set of constraints provided by the user or the genome database, without specific enzyme kinetics inputs. By using FBA, we can analyse the alkane degradation pathway and electron generating reaction while taking into consideration of the complex metabolism network. This algorithm also helped us bypass the enzyme kinetics part, since little has been documented about the ASS enzyme complex in current literature. However, this method was limited to simulate equilibrium state only, and the theoretical limits are highly dependent on the database and constraints provided.[1] In our project, we used iSO783 as Shewanella Oneidensis MR-1 metabolic model, and made adjustment upon it. iSO783 is a widely-used S. Oneidensis MR-1 model containing 774 reactions, and 783 genes. [2]
Hopefully, this mathematical modelling can provide an insight into the interdependence of conditional factors and serve as a guide of our experimental design.
Extracellular Electron Transport
In the MFC, S. oneidensis MR-1 has been reported to transport electrons to electrode in three ways, (1) direct electron transport (DET) mode based on the c-type cytochromes and conductive pili called nanowires, (2) self-secreted flavins to convey electrons and 3) the mediated electron transfer (MET) mode, which relies on exogenous mediators [1]. The DET route, which is a more dominant transport mode without the help of exogenous mediators, is modelled and studied. As reviewed in the MFC part of our wiki, the DET route depends on the c-type cytochrome (MtrC and OmcA) in the cytoplasmic membrane interacting with the electrode. It can also use nanowires to transfer electrons to the electrode that is located distantly from the cells.
In the iSO783, we considered the reaction flux of CYOO2 as our optimization objective as it involved in the reduction of a type of cytochrome c protein, denoted as Cco (SO2361 and SO2362 and SO2363 and SO2364) or Cyco (SO4606 and SO4607 and SO4609) in iSO783). In such case, the reaction flux of CYOO2 is taken to estimate the DET flux.
DET- Lactate
As noticed the ability of S. oneidensis MR-1 utilizing lactate to generate electricity [3], we first examined the FBA model using lactate as the carbon source for electricity generation. We examined the effect of varying lactate uptake flux on two separate objectives, i.e. maximizing biomass growth and maximizing DET flux. We assume 5% of maximum growth as the boundary of biomass growth flux, which would be the minimum viable growth rates in practice as described by Mao [4].
Figure 4. The effect of lactate on maximum direct electron transfer(DET) flux of Shewanella utilizing lactate at viable growth flux boundary
Figure 4 shows that the DET flux reached a plateau at 81.68 mmol/gDW/h as lactate uptake flux increased. An upper bound existed such that increasing lactate uptake would no longer increase the electricity generation.
Figure 5. The trade off relationship between direct electron transfer(DET) flux and biomass growth flux when lactate uptake is set as constant
Noted that the biomass growth is driven to its lower bound when the optimization objective is set as DET flux, we studied the relationship between DET flux with biomass flux at constant lactate input. In figure 5, the DET flux first sustained at 81.68 mmol/gDW/h but then decreased when biomass flux increased beyond 0.164h-1. This implies the electricity generation could possibly be maximized when below a certain growth rate, however, higher growth rate could possibly decrease the electricity generation.
Shewanella Growth in Hexane
Figure 6. Maximum growth flux of Shewanella uptaking hexane under aerobic and anaerobic condition
Figure 6 shows the maximized growth flux generated by FBA model for aerobic and anaerobic conditions. Aerobic condition is set as oxygen flux=0, fumarate flux lower bound=-20.42mmol/gDW/h,acetate flux upper bound=3.134mmol/gDW/h, pyruvate flux upper bound=0.872mmol/gDW/h, and hexane flux ranges from -5mmol/gDW/h to zero. Aerobic condition is set as oxygen flux lower bound=20.42mmol/gDW/h
In this part, we used FBA to generate the maximized growth flux of Shewanella oneidensis MR-1 when providing hexane as energy source. Reaction constraints were set based on literature [5] values and genome database was adjusted to suit our engineered construct by adding the alkane degradation reactions. Results show that the maximized growth under aerobic condition is around 0.513 h-1 , while the anaerobic growth flux is around 0.298h-1 , both enough to sustain growth. This means theoretically, Shewanella oneidensis MR-1 is able to grow in a hexane-containing media without provision of lactate or glucose under both aerobic and anaerobic conditions.
Maximum current generation and power output
Current is given by the derivative of the electric charge over time. The electron flux can be converted to current using Faraday’s constant 96485 C/mol
Given the maximum DET flux is 81.68mmol/gDW/h, therefore, the Shewanella oneidensis MR-1 is possible to generate current up to 2.189A/gDW.
The upper limit of MFC cell voltage is calculated based on the difference of standard cell potential in the anode and cathode. The standard potential are summarized in the table.
|
Redox couple |
Eo (V) |
Anode |
Cytochrome c (Fe3+) + e− → Cytochrome c (Fe2+) |
+0.254[6] |
Cathode |
Ferricyanide [Fe(CN)6]3− + e− → Ferrocyanide [Fe(CN)6]4− |
+0.436[7] |
|
O2 + 4H++4e− → 2H2O |
+0.51 [8] |
In the MFC design that uses ferricyanide as cathode, the maximum cell voltage would be 0.182V. If oxygen is used as cathode, the maximum cell voltage would be 0.256V. The maximum power output could be 0.398W/gDW in ferricyanide while 0.56W/gDW could be reached using oxygen as cathode.
Effect of fumarate
Figure 7. The effect of fumarate on maximum direct electron transfer(DET) flux of Shewanella utilizing hexane at viable growth flux boundary
In pursuit of an overall higher electron output, we tried to identify how the nutritional factors in culturing media affect DET flux and growth flux. Hexane concentration was found to play a minor role since the actual uptake flux was restricted to be low(around -6.04*10-7 mmol/gDW/h) by internal factors of the bacteria.
However, fumarate was found to be an essential factor since it affects for growth, DET, and hexane uptake. In figure 7, the blue curve shows a positive correlation between fumarate uptake and DET flux (with growth flux set to 5%), and DET achieves its maximum value 81.68mmol/gDW/h at a fumarate uptake flux of 8 mmol/gDW/h. The green curve is the corresponding growth flux when DET was optimized. Since DET and growth cannot be optimized simultaneously, we separately constructed the red curve to describe the relationship between growth flux and fumarate uptake when optimizing growth. The curve shows a positive correlation and growth flux achieves its maximum value 0.9408h-1 when fumarate uptake flux reaches 94 mmol/gDW/h.
Aeration effect on DET flux
We also explored the difference of DET flux under aerobic and anaerobic condition. In anaerobic condition, we assumed fumarate as the electron acceptor. It is surprising that the DET flux is driven to extremely small negative value under anaerobic condition, while DET flux can reach 81.68mmol/gDW/h when oxygen flux is set as 20.42mmol/gDW/h according to literature[4].
REFERENCES:
References:
- Orth, J.D., Thiele, I. and Palsson, B.(2010). What is Flux Balance Analysis? Nature Biotechnology, [1112-9778], Volume:28, Issue:3, Page:245, doi:10.1038/nbt.1614 Available at https://www.nature.com/articles/nbt.1614
- 2012.igem.org. (2015). Team: NTU-Singapore/Modeling. [online] Available at: https://2015.igem.org/Team:NTU-Singapore/Modeling
- L. Mao and W. Verwoerd, "Theoretical exploration of optimal metabolic flux distributions for extracellular electron transfer by Shewanella oneidensis MR-1", Biotechnology for Biofuels, vol. 7, no. 1, 2014.
- G. Newton, S. Mori, R. Nakamura, K. Hashimoto and K. Watanabe, "Analyses of Current-Generating Mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in Microbial Fuel Cells", Applied and Environmental Microbiology, vol. 75, no. 24, pp. 7674-7681, 2009.
- L. Berthe-Corti and W. Ebenhöh, "A mathematical model of cell growth and alkane degradation in Wadden Sea sediment suspensions", Biosystems, vol. 49, no. 3, pp. 161-189, 1999.
- B. Virdis, S. Freguia, R. Rozendal, K. Rabaey, Z. Yuan and J. Keller, "Microbial Fuel Cells", Treatise on Water Science, pp. 641-665, 2011.
- M. Pandurangachar, B. Kumara Swamy, B. Chandrashekar, Ongera Gilbert, Sathish Reddy and B. Sherigara, "Electrochemical Investigations of Potassium Ferricyanide and Dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate Modified Carbon Paste Electrode: A Cyclic Voltammetric Study",International Journal of Electrochemical Science, vol. 5, no. 8, pp. 1187-1202, 2010.
- U. Schröder, "Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency", Phys. Chem. Chem. Phys., vol. 9, no. 21, pp. 2619-2629, 2007.
1