Line 1,034: | Line 1,034: | ||
<h2><center><i>Figure 8. Testing flow of liquid in the 3M chip | <h2><center><i>Figure 8. Testing flow of liquid in the 3M chip | ||
</i></center></h2> | </i></center></h2> | ||
− | + | <br> | |
<h2>Confirming the hydrophilicity of the chip, a prototype made from double sided tape and film was tested. The chip had a channel width of 200µm, which is a conventional width for PDMS microfluidic chip. However, the liquid did not flow to the wells. Through varying different width of the microfluidic chip, we realized that maximizing the surface area exposed to the hydrophilic film is more important than varying surface pressure of the wells. The finalized chip had a 600µm width to ensure good flow but prevent flowback. </h2> | <h2>Confirming the hydrophilicity of the chip, a prototype made from double sided tape and film was tested. The chip had a channel width of 200µm, which is a conventional width for PDMS microfluidic chip. However, the liquid did not flow to the wells. Through varying different width of the microfluidic chip, we realized that maximizing the surface area exposed to the hydrophilic film is more important than varying surface pressure of the wells. The finalized chip had a 600µm width to ensure good flow but prevent flowback. </h2> | ||
<br> | <br> |
Revision as of 17:27, 17 October 2018