Line 55: | Line 55: | ||
<div> | <div> | ||
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><strong><span style="font-family: Arial;">Introduction</span></strong></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;">According to our project modules, we try to categorize our modelling into three parts.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;">The first one is from the Laccase Module, where we attempt to characterize our laccase construct from previous iGEM data.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;">The second one is from the Alkane Metabolism Module. We are fitting the kinetic parameters of fumarate addition mechanism to observe the activity of ASS and observe the rate of conversion from alkane to succinate.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;">While for the MFC module, we focus our modelling to establish data to find the optimum concentration for </span><em><span style="font-family: Arial;"><i>Shewanella oneidensis MR-1</i></span></em><span style="font-family: Arial;"> growth, as well as estimating the voltage and power density that can be produced.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;"> </span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><strong><span style="font-family: Arial;">Laccase Module</span></strong></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;">As there is little documentation about the usage of laccase from </span><em><span style="font-family: Arial;">E. coli</span></em><span style="font-family: Arial;">, we rely on the literature reviews</span> <span style="font-family: Arial; "><sup>[1]</sup></span><span style="font-family: Arial;"> of laccase secreted by fungi to correlate with the number of alkane and alkene chains that can be formed. Using simple calculation, it can easily be translated that 2900 alkane chains (30%) and 900 alkene chains (10%) should be formed after polyethylene is treated with laccase for every centimeter squared.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;">Using UCL iGEM 2012 team's </span><span style="font-family: Arial;"><sup>[2]</sup></span><span style="font-family: Arial;"> findings on polyethylene degradation, we assume that the rate of degradation will eventually be linear with 0.9 PE molecule degraded per second, of which 28 molecules of alkane and 9 molecules of alkene will be formed in 100 seconds. Using the weight and the density of polyethylene, there would be 3.86×10<sup>-12</sup> mm<sup>3</sup> or 82,000 polyethylene molecules degraded within one day.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial; color: #222222;">To improve BBa_K863006 obtained from the Bielefeld iGEM 2012, we try to characterize it by adding OmpA and his-tag. However, due to time constraint, our wet lab experiment could not acquire any valuable data and the modelling team will only rely on literature findings.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial; color: #222222;">OmpA itself is a major protein that can be found in the outer membranes of most gram-negative bacteria, including </span><em><span style="font-family: Arial; color: #222222;">E. coli</span></em><span style="font-family: Arial; color: #222222;">. It will signal and facilitate </span><em><span style="font-family: Arial; color: #222222;">E. coli</span></em><span style="font-family: Arial; color: #222222;"> to secrete enzyme more efficiently, in this case, laccase.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial; color: #222222;"> </span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><center><img src="https://static.igem.org/mediawiki/2018/6/67/T--Hong_Kong_HKUST--Foldchangetime.png" alt="" /></center></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: center; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: center; font-size: 12pt;"><span style="font-family: Arial;"><b>Figure 1.</b> Average fold change of enzyme secretion of </span><em><span style="font-family: Arial; color: #222222;">E. coli</span></em><span style="font-family: Arial; color: #222222;"> using OmpA.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;"> </span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;">Figure 1 shows that the average secretion efficiency of </span><em><span style="font-family: Arial;">E. coli</span></em><span style="font-family: Arial;"> using OmpA can be increased by 3% during the first hour of incubation, and the fold changes by 2.11 within the first 20 hours </span><span style="font-family: Arial; "><sup>[3]</sup></span><span style="font-family: Arial;">. Here, fold change indicates the relative values of the yields or secretion efficiencies of constructs from OmpA Sp divided by native Sp </span><span style="font-family: Arial; "><sup>[3]</sup></span><span style="font-family: Arial;">.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;">Since we want to try to put the OmpA sequence before the laccase sequence, We try to collaborate the data obtained from Figure 1 with the available characterization result of the laccase we are using on the iGEM Registry for BBa_K863006 </span><span style="font-family: Arial; "><sup>[4]</sup></span><span style="font-family: Arial;">.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;"> </span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><center><img src="https://static.igem.org/mediawiki/2018/e/eb/T--Hong_Kong_HKUST--Activitygraph.png" alt="" /></center></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: center; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: center; font-size: 12pt;"><span style="font-family: Arial; color: #222222;"><b>Figure 2.</b> Comparison of activity expectation of BBa_K863005 with (orange) and without (blue) OmpA with ABTS as the substrate.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;"> </span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;">Figure 2 denotes the estimated activity with ABTS as substrate. Here, the measurement of 308 ng ECOL (BBa_K863005) was done in pH 5 at 25° C (Bielefeld, 2012). The 8mM concentration of ABTS was assigned to be substrate saturated. The bars on the right indicates the assessed amount of oxidized ABTS when ECOL is ligated with OmpA.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;">This figure helps our team to be aware of the overall impact of OmpA to the secretion of the laccase enzyme.</span></p> |
<p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | ||
<strong><span style="font-family:Arial; "> </span></strong> | <strong><span style="font-family:Arial; "> </span></strong> | ||
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><strong><span style="font-family: Arial;">Click here to know more about our other modelling!</span></strong></p> |
<p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | <p style="margin-top:0pt; margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"> | ||
<strong><span style="font-family:Arial; "> </span></strong> | <strong><span style="font-family:Arial; "> </span></strong> | ||
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;"><a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Model_Alkane_mfc">Alkane and MFC</a></span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial;"><a href="https://2018.igem.org/Team:Hong_Kong_HKUST/Model_FBA">Approach using Flux Balance Analysis</a></span></p> |
Line 163: | Line 163: | ||
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><strong><span style="font-family: Arial; color: #222222;"> </span></strong></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><strong><span style="font-family: Arial; color: #222222;"> </span></strong></p> |
− | <!--<p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <!--<p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><strong><span style="font-family: Arial; color: #222222;">CO</span></strong><strong><span style="font-family: Arial; font-size: 8pt; color: #222222;"><sub>2</sub></span></strong><strong><span style="font-family: Arial; color: #222222;"> to Methane</span></strong></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial; color: #222222;">Carbon dioxides can be converted into methane after undergoing reduction process, in which the molecule uses the energy from the sun/catalyst to break up the CO</span><span style="font-family: Arial; font-size: 8pt; color: #222222;"><sub>2</sub></span><span style="font-family: Arial; color: #222222;"> molecule into carbon and oxygen atoms, then combine with hydrogen to form methane and water, as explained on the chemical equation below.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><img src="https://static.igem.org/mediawiki/2018/1/1c/T--Hong_Kong_HKUST--CO2CH4reaction.png" alt="" width="366" height="54" /></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;">Using irreversible Henri-Michaelis-Menten Kinetics, we try to consolidate an enzyme-catalyzed reaction with a single reaction and reaction rate equation with Vmax of 0.8 ± 0.07 nmol/min and a Km for </span><span style="font-family: Arial; color: #222222;">CO</span><span style="font-family: Arial; font-size: 8pt; color: #222222;"><sub>2</sub></span><span style="font-family: Arial;"> of 23.3 ± 3.7 mM </span><span style="font-family: Arial; "><sup>[1]</sup></span><span style="font-family: Arial;">.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><img src="https://static.igem.org/mediawiki/2018/2/22/T--Hong_Kong_HKUST--Co2toCH4.png" alt="" width="289" height="284" /></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;">Figure 3</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;"> </span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 0pt; text-align: justify; font-size: 12pt;"><span style="font-family: Arial;">From figure 3, it can be seen that it takes over 3 hours to fully convert 10 nmol of </span><span style="font-family: Arial; color: #222222;">CO</span><span style="font-family: Arial; font-size: 8pt; color: #222222;"><sub>2</sub></span><span style="font-family: Arial;"> into methane. It appears to verify that common features of homogeneous catalysts for </span><span style="font-family: Arial; color: #222222;">CO</span><span style="font-family: Arial; font-size: 8pt; color: #222222;"><sub>2</sub></span><span style="font-family: Arial;"> reduction to </span><span style="font-family: Arial; color: #222222;">CH</span><span style="font-family: Arial; font-size: 8pt; color: #222222;"><sub>4</sub></span><span style="font-family: Arial;"> are low reaction rates (e.g., turnover frequencies) and a limited number of turnovers (e.g., turnover number) before inactivation of the catalyst </span><span style="font-family: Arial; "><sup>[2]</sup></span><span style="font-family: Arial;">.</span></p> |
− | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; | + | <p style="margin-top: 0pt; margin-bottom: 8pt; text-align: justify; font-size: 12pt; background-color: #ffffff;"><span style="font-family: Arial; color: #222222;"> </span></p> --> |
</div> | </div> | ||
Revision as of 03:27, 18 October 2018
Laccase Secretion Efficiency Model
Introduction
According to our project modules, we try to categorize our modelling into three parts.
The first one is from the Laccase Module, where we attempt to characterize our laccase construct from previous iGEM data.
The second one is from the Alkane Metabolism Module. We are fitting the kinetic parameters of fumarate addition mechanism to observe the activity of ASS and observe the rate of conversion from alkane to succinate.
While for the MFC module, we focus our modelling to establish data to find the optimum concentration for Shewanella oneidensis MR-1 growth, as well as estimating the voltage and power density that can be produced.
Laccase Module
As there is little documentation about the usage of laccase from E. coli, we rely on the literature reviews [1] of laccase secreted by fungi to correlate with the number of alkane and alkene chains that can be formed. Using simple calculation, it can easily be translated that 2900 alkane chains (30%) and 900 alkene chains (10%) should be formed after polyethylene is treated with laccase for every centimeter squared.
Using UCL iGEM 2012 team's [2] findings on polyethylene degradation, we assume that the rate of degradation will eventually be linear with 0.9 PE molecule degraded per second, of which 28 molecules of alkane and 9 molecules of alkene will be formed in 100 seconds. Using the weight and the density of polyethylene, there would be 3.86×10-12 mm3 or 82,000 polyethylene molecules degraded within one day.
To improve BBa_K863006 obtained from the Bielefeld iGEM 2012, we try to characterize it by adding OmpA and his-tag. However, due to time constraint, our wet lab experiment could not acquire any valuable data and the modelling team will only rely on literature findings.
OmpA itself is a major protein that can be found in the outer membranes of most gram-negative bacteria, including E. coli. It will signal and facilitate E. coli to secrete enzyme more efficiently, in this case, laccase.
Figure 1. Average fold change of enzyme secretion of E. coli using OmpA.
Figure 1 shows that the average secretion efficiency of E. coli using OmpA can be increased by 3% during the first hour of incubation, and the fold changes by 2.11 within the first 20 hours [3]. Here, fold change indicates the relative values of the yields or secretion efficiencies of constructs from OmpA Sp divided by native Sp [3].
Since we want to try to put the OmpA sequence before the laccase sequence, We try to collaborate the data obtained from Figure 1 with the available characterization result of the laccase we are using on the iGEM Registry for BBa_K863006 [4].
Figure 2. Comparison of activity expectation of BBa_K863005 with (orange) and without (blue) OmpA with ABTS as the substrate.
Figure 2 denotes the estimated activity with ABTS as substrate. Here, the measurement of 308 ng ECOL (BBa_K863005) was done in pH 5 at 25° C (Bielefeld, 2012). The 8mM concentration of ABTS was assigned to be substrate saturated. The bars on the right indicates the assessed amount of oxidized ABTS when ECOL is ligated with OmpA.
This figure helps our team to be aware of the overall impact of OmpA to the secretion of the laccase enzyme.
Click here to know more about our other modelling!
Approach using Flux Balance Analysis
REFERENCES:
- Sowmya, H., Ramalingappa, B., Nayanashree, G., Thippeswamy, B. and Krishnappa, M. (2014). Polyethylene Degradation by Fungal Consortium. IJER, [online] 9(3), pp.823-830. Available at: https://ijer.ut.ac.ir/article_969.html.
- 2012.igem.org. (2012). Team:University College London/Module 3/Modelling. [online] Available at: https://2012.igem.org/Team:University_College_London/Module_3/Modelling [Accessed 5 Oct. 2018].
- Pechsrichuang, P., Songsiriritthigul, C., Haltrich, D., Roytrakul, S., Namvijtr, P., Bonaparte, N. and Yamabhai, M. (2016). OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system. SpringerPlus, [online] 5(1), p.1200. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963352/ .
- Parts.igem.org. (2012). Part:BBa_K863006. [online] Available at: http://parts.igem.org/Part:BBa_K863006 [Accessed 5 Oct. 2018].