Line 110: | Line 110: | ||
<article> | <article> | ||
− | Like bacterioferritin and bacterial ferritin, human ferritin consists of 24 four-helix bundles, which self-assemble to form a hollow and spherical protein (Figure | + | Like bacterioferritin and bacterial ferritin, human ferritin consists of 24 four-helix bundles, which self-assemble to form a hollow and spherical protein (Figure 1). The assembled ferritin consists of bundles which are either heavy or light chains. It is approximately 500 kDa big with an inner diameter of 8nm and an outer diameter of 12 nm. Up to 4500 atoms can be stored in its cavity. Pores in the shell allow the diffusion of iron ions into the interior of the ferritin (Briat and Lobréaux, 1997; Butts <i>et al.</i>, 2008; Pozzi <i>et al.</i>, 2015). |
</article> | </article> | ||
Line 116: | Line 116: | ||
<img class="figure sixty" src="https://static.igem.org/mediawiki/2018/9/90/T--Bielefeld-CeBiTec--Human_ferritin_wt_vk.png"> | <img class="figure sixty" src="https://static.igem.org/mediawiki/2018/9/90/T--Bielefeld-CeBiTec--Human_ferritin_wt_vk.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 1:</b> Protein structure of the human ferritin wild-type. The protein structure was generated with Chimera (Pettersen <i>et al.</i>, 2004). |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
Line 127: | Line 127: | ||
<article> | <article> | ||
− | Human ferritin can not only form iron nanoparticles, but also nanoparticles of e.g. gold or silver ions(Butts <i>et al.</i>, 2008). This makes human ferritin suitable for the recycling of valuable metal ions (Figure | + | Human ferritin can not only form iron nanoparticles, but also nanoparticles of e.g. gold or silver ions(Butts <i>et al.</i>, 2008). This makes human ferritin suitable for the recycling of valuable metal ions (Figure 2). However, a disadvantage of the wild-type is that nanoparticles are also formed on the outside of the protein shell. Therefore, we introduce an <a href="">improved human ferritin</a>, which is optimized to form nanoparticles mainly in the inside of the ferritin and has a higher affinity for gold and silver ions. |
</article> | </article> | ||
Line 133: | Line 133: | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/e/e3/T--Bielefeld-CeBiTec--recyclng_with_ferritin_vk.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/e/e3/T--Bielefeld-CeBiTec--recyclng_with_ferritin_vk.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 2:</b> Ferritin is suitable for metal recycling, since it can form e.g. iron, silver and gold nanoparticles in its cavity. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
Line 152: | Line 152: | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/a/a0/T--Bielefeld-CeBiTec--cg--normFer2CoulouredSubunits.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/a/a0/T--Bielefeld-CeBiTec--cg--normFer2CoulouredSubunits.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure | + | <b>Figure 3:</b>Fully assembled ferritin from consisting of 24 subunits with two adjacent subunits coloured in red and orange.. |
</figcaption> | </figcaption> | ||
</figure> | </figure> |
Revision as of 06:11, 6 December 2018
Nanoparticles
Short Summary
Escherichia coli Ferritins
Human Ferritin
Ferritin Assembly and Stability Modification
The results for the nanoparticle experiments can be found here
Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.
Briat, J.-F. and Lobréaux, S. (1997). Iron transport and storage in plants. Trends Plant Sci. 2: 187–193.
Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008). Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.
Casiday, R. and Frey, R. (2000).Ferritin, the Iron-Storage Protein.: 25.
Iwahori, K., Takagi, R., Kishimoto, N., & Yamashita, I. (2011). A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Materials Letters, 65(21-22), 3245-3247.
Jacobs, J. F., Hasan, M. N., Paik, K. H., Hagen, W. R., & van Loosdrecht, M. (2010). Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and bioengineering, 105(5), 918-923.
Massé, E., & Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, 99(7), 4620-4625.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.
Pozzi, C., Di Pisa, F., Bernacchioni, C., Ciambellotti, S., Turano, P., and Mangani, S. (2015). Iron binding to human heavy-chain ferritin. Acta Crystallogr. D Biol. Crystallogr. 71: 1909–1920.
Rivera, M. (2017). Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.
Rivera, M. (2017). Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.
Yoshizawa, K., Iwahori, K., Sugimoto, K., & Yamashita, I. (2006). Fabrication of gold sulfide nanoparticles using the protein cage of apoferritin. Chemistry Letters, 35(10), 1192-1193.
Zhang, L., Swift, J., Butts, C.A., Yerubandi, V., and Dmochowski, I.J. (2007).Structure and activity of apoferritin-stabilized gold nanoparticles. J. Inorg. Biochem. 101: 1719–1729.