Edwinlawisan (Talk | contribs) |
Edwinlawisan (Talk | contribs) |
||
Line 160: | Line 160: | ||
<h3><b>Materials and Equipments<b></h3> | <h3><b>Materials and Equipments<b></h3> | ||
<h5>Some of the materials for this study are obtained from 2018 DNA Distribution Kit. Other materials and equipment are provided by Institute of Human Virology and Cancer Biology (IHVCB), UI. | <h5>Some of the materials for this study are obtained from 2018 DNA Distribution Kit. Other materials and equipment are provided by Institute of Human Virology and Cancer Biology (IHVCB), UI. | ||
+ | <br> | ||
<br> | <br> | ||
<i>Materials from 2018 DNA Distribution Kit</i> | <i>Materials from 2018 DNA Distribution Kit</i> | ||
Line 182: | Line 183: | ||
<br>• Micropipettes and tips | <br>• Micropipettes and tips | ||
</h5><br> | </h5><br> | ||
− | |||
− | <h3>< | + | <h3> Methods </h3> |
− | <h5> | + | <h5><i>Safety cautions</i></h5> |
− | <h5> | + | <h5>During laboratory works, we took extra precautions to minimize potential harm. We wore personal protective equipment (PPE) such as laboratory safety gowns with head cover, masks, and gloves (Figure 3, left). For procedures that require aseptic technique such as bacterial inoculation, we conducted the experiments in biosafety cabinet (BSC) to prevent contamination (Figure 3, right). We also managed every infectious waste according to our laboratory’s standard operating procedures, such as decontaminating all media used for bacterial growth with 10% sodium hypochlorite overnight before being thrown into appropriate container and autoclaving them (121<sup>o</sup>C, 20 minutes) along with other infectious wastes. In addition, to ensure validity of our results, we used same instrument settings, 96-well plates, and volumes of sample added to the plates in entire protocol whenever possible. </h5><br> |
+ | |||
+ | <h5><i>Part 1: Calibration</i></h5> | ||
+ | <h5> Before we proceeded to Part II and III of the protocol, we had made three calibrations as follows:</h5><br> | ||
+ | <h5>• Calibration #1: this calibration is aimed to obtain a conversion factor to transform absorbance at 600 nm wavelength (Abs<sub>600</sub) data from plate reader into comparable OD<sub>600</sub> as would be measured with spectrophotometer due to Abs<sub>600</sub> data are volume dependent. First, we made four replicates of LUDOX CL-X and ddH<sub>2</sub>O in 96-well plate (each well contains 100 uL volume). We then measured Abs<sub>600</sub> of the samples and recorded them. The Abs<sub>600</sub> data were calculated for their respective mean and then subtracted each other to obtain corrected Abs<sub>600</sub>. OD<sub>600</sub> measured with spectrophotometer (from reference) was divided with corrected Abs<sub>600</sub> to get the conversion factor. </h5><br> | ||
</div> | </div> | ||
Revision as of 09:54, 26 July 2018
InterLab Studies
Introduction
In the field of engineering, repeatable and reproducible measurements are important to obtain valid and reliable results. However, these have been proven difficult to achieve as there are differences in environmental condition of laboratories, individuals conducting the measurements, instruments being used, and other sources of variability. Eventually, this could lead to hindrance of advancements in engineering, including synthetic biology.
For past several years, iGEM Measurement Committee has been working on this issue by encouraging registered iGEM 2018 teams to participate in annual InterLab study. Since its introduction in 2014, the study has been conducted four times, making this year’s study to be the fifth one. The goal of this study is to minimize possible sources of variability in laboratory measurements and thus allowing synthetic biology to attain its full potential as a tool for improving quality of life.
InterLab study is mainly focused on fluorescence measurements as one of widely utilized protocols in synthetic biology studies. Data obtained from such measurements are often reported in different units, or processed in different methods, thereby hampering fluorescence data comparison. Hence, iGEM Measurement Committee introduces a standardized protocol for green fluorescence protein (GFP) expression level measurement. Previous studies showed that variability of the measurements can be significantly reduced by calibrating measured absolute fluorescence units of expressed GFP against known concentration of florescent molecule. However, when the procedure is carried out against a population of cells, the cell number in given sample makes great variability among measurements. This is due to the values of total cell number used to calculate mean expressed GFP per cell are obtained from optical density (OD), which is a subject to large variability.
Therefore, in this year’s InterLab study, participating 2018 iGEM teams are encouraged to help iGEM Measurement Committee in investigating whether more direct method in expressing total cell number for fluorescence calculation, such as absolute cell count or colony-forming units (CFUs), are better than OD to reduce variability in bulk measurement. We proudly announce our participation in 5th InterLab study for the first time ever, in the hope that our results may contribute to the improvements in synthetic biology. Our members contributing in this InterLab study are shown in Figure 1.
Materials and Equipments
Some of the materials for this study are obtained from 2018 DNA Distribution Kit. Other materials and equipment are provided by Institute of Human Virology and Cancer Biology (IHVCB), UI.
Materials from 2018 DNA Distribution Kit
• LUDOX CL-X (45% colloidal silica suspension) stock
• Microspheres (silica beads suspension) stock ~ 4.7 x 108 microspheres
• Sodium fluorescein stock
• Devices (parts in pSB1C3 plasmid backbone, all dried in Distribution Kit Plate): negative control, positive control, test device 1, test device 2, test device 3, test device 4, test device 5, and test device 6.
Materials and equipment provided by IHVCB, UI:
• ddH2O
• 1x phosphate buffered saline (PBS), pH 7.4-7.6
• 96-well plate (clear plate with flat bottom)
• 96-well plate reader (GloMax®– Multi Detection System, Figure 2). Specifications: can measure both absorbance and fluorescence, no settings for pathlength correction and temperature adjustment, has four installed filters and two customizable filter holders in six-position filter wheel, reads the samples from top of the plate
• Competent cells of Escherichia coli strain DH5α
• Luria-Bertani (LB) media, liquid and agar
• Chloramphenicol (dissolved in absolute ethanol at concentration of 25 mg/mL, when added into LB media it should be at ratio 1:1000)
• 50 ml Falcon tubes
• Incubator (set at 37oC)
• 1.5 ml microtubes
• Bucket with ice
• Micropipettes and tips
Methods
Safety cautions
During laboratory works, we took extra precautions to minimize potential harm. We wore personal protective equipment (PPE) such as laboratory safety gowns with head cover, masks, and gloves (Figure 3, left). For procedures that require aseptic technique such as bacterial inoculation, we conducted the experiments in biosafety cabinet (BSC) to prevent contamination (Figure 3, right). We also managed every infectious waste according to our laboratory’s standard operating procedures, such as decontaminating all media used for bacterial growth with 10% sodium hypochlorite overnight before being thrown into appropriate container and autoclaving them (121oC, 20 minutes) along with other infectious wastes. In addition, to ensure validity of our results, we used same instrument settings, 96-well plates, and volumes of sample added to the plates in entire protocol whenever possible.
Part 1: Calibration
Before we proceeded to Part II and III of the protocol, we had made three calibrations as follows:
• Calibration #1: this calibration is aimed to obtain a conversion factor to transform absorbance at 600 nm wavelength (Abs600600 as would be measured with spectrophotometer due to Abs600 data are volume dependent. First, we made four replicates of LUDOX CL-X and ddH2O in 96-well plate (each well contains 100 uL volume). We then measured Abs600 of the samples and recorded them. The Abs600 data were calculated for their respective mean and then subtracted each other to obtain corrected Abs600. OD600 measured with spectrophotometer (from reference) was divided with corrected Abs600 to get the conversion factor.
OUR PROJECT
To be added
RESULTS AND DISCUSSIONS