Line 51: | Line 51: | ||
<article> | <article> | ||
− | Gold nanoparticles (AuNPs) are popular in many scientific applications, e.g. the transfection of human cells (Chang <i>et al.</i>, 2008). However, there are several reports regarding its toxicity whose results differ greatly from each other (Brust <i>et al.</i>, 1995; Caruntu <i>et al.</i>, 2002; Zhang <i>et al.</i>, 2015). AuNPs in the form of nanorods could be identified as non-toxic, solely the coating agent was found to be toxic (Alkilany <i>et al.</i>, 2009). AuNPs in general do not possess toxic properties. Reported toxic effects of AuNPs result from poor purification of the AuNPs from Au(III) (Shareena Dasari, 2015). | + | Gold nanoparticles (AuNPs) are popular in many scientific applications, e.g. the transfection of human cells (Chang <i>et al.</i>, 2008). However, there are several reports regarding its toxicity whose results differ greatly from each other (Brust <i>et al.</i>, 1995; Caruntu <i>et al.</i>, 2002; Zhang <i>et al.</i>, 2015). AuNPs in the form of nanorods could be identified as non-toxic, solely the coating agent was found to be toxic (Alkilany <i>et al.</i>, 2009). AuNPs in general do not possess toxic properties. Reported toxic effects of AuNPs result from poor purification of the AuNPs from Au(III) (Shareena Dasari, 2015).</br> |
− | Gold ions, such as Au(I) and Au(III), have toxic properties. Shareena Dasari <i>et al.</i> proved in 2015 that exposure to Au(I) and Au(III) inhibits the growth of nonpathogenic <i>Escherichia coli</i> in every examined buffer as seen in figure 1. Furthermore they determined the half maximal inhibitory concentrations (IC<sub>50</sub>) for both ions in the examined buffers as seen in table 1, clearly indicating that gold ions possess toxic properties to <i>E. coli</i>. The toxic effect of gold ions is due to its ability to oxidative cleavage of peptide and protein disulfide bonds (Witkiewicz & Shaw, 1981). | + | Gold ions, such as Au(I) and Au(III), have toxic properties. Shareena Dasari <i>et al.</i> proved in 2015 that exposure to Au(I) and Au(III) inhibits the growth of nonpathogenic <i>Escherichia coli</i> in every examined buffer as seen in figure 1. Furthermore they determined the half maximal inhibitory concentrations (IC<sub>50</sub>) for both ions in the examined buffers as seen in table 1, clearly indicating that gold ions possess toxic properties to <i>E. coli</i>. The toxic effect of gold ions is due to its ability to oxidative cleavage of peptide and protein disulfide bonds (Witkiewicz & Shaw, 1981).</br> |
Since gold ions are toxic to the NPs producing cell, the reduction to AuNPs is desirable, however the stress to the cell and its inhibitory effect have to be investigated. | Since gold ions are toxic to the NPs producing cell, the reduction to AuNPs is desirable, however the stress to the cell and its inhibitory effect have to be investigated. | ||
</article> | </article> | ||
Line 59: | Line 59: | ||
<article> | <article> | ||
− | Silver nanoparticles (AgNPs) are known to possess toxic properties. The toxicity of AgNPs varies in response to the shape and size of the AgNPs. The toxicity increases significantly when the AgNPs are smaller than 10 nm (Ivask <i>et al.</i>, 2014). It has been demonstrated that AgNPs exhibit toxic effects in bacteria at environmentally relevant concentrations (Colman <i>et al.</i>, 2013). The growth inhibition is dependent on the concentration of the AgNPs. The minimal inhibitory concentration (MIC) for AgNPs in <i>E. coli</i> is considered to be between 3.3 and 6.6 nM (Kim <i>et al.</i>, 2007). The exposure to AgNPs results in an apoptosis-like response of the cell. To begin with, the membrane is depolarized by AgNPs, generating reactive oxygen species (ROS), such as hydroxyl peroxide, hydroxyl radicals and superoxide anions.These ROS cause oxidative stress and lead to the fragmentation of DNA. Simultaneously calcium accumulates in the cytoplasm of the cell. An increased concentration of calcium results in the inversion of phosphatidylserine in the membrane. All of these processes ultimately lead to the activation of bacterial caspase-like proteins and RecA (Bortner & Cidlowski, 2007; Yun & Lee, 2017). (Figure 2 einfügen) However there are considerations whether the AgNPs are toxic or whether the toxic effect is due to ions dissolving from the nanoparticles (Hwang <i>et al.</i>, 2008). | + | Silver nanoparticles (AgNPs) are known to possess toxic properties. The toxicity of AgNPs varies in response to the shape and size of the AgNPs. The toxicity increases significantly when the AgNPs are smaller than 10 nm (Ivask <i>et al.</i>, 2014). It has been demonstrated that AgNPs exhibit toxic effects in bacteria at environmentally relevant concentrations (Colman <i>et al.</i>, 2013). The growth inhibition is dependent on the concentration of the AgNPs. The minimal inhibitory concentration (MIC) for AgNPs in <i>E. coli</i> is considered to be between 3.3 and 6.6 nM (Kim <i>et al.</i>, 2007). The exposure to AgNPs results in an apoptosis-like response of the cell. To begin with, the membrane is depolarized by AgNPs, generating reactive oxygen species (ROS), such as hydroxyl peroxide, hydroxyl radicals and superoxide anions.These ROS cause oxidative stress and lead to the fragmentation of DNA. Simultaneously calcium accumulates in the cytoplasm of the cell. An increased concentration of calcium results in the inversion of phosphatidylserine in the membrane. All of these processes ultimately lead to the activation of bacterial caspase-like proteins and RecA (Bortner & Cidlowski, 2007; Yun & Lee, 2017). (Figure 2 einfügen) However there are considerations whether the AgNPs are toxic or whether the toxic effect is due to ions dissolving from the nanoparticles (Hwang <i>et al.</i>, 2008).</br> |
− | The toxic effects of silver salts have been known since antiquity. Even Hippocrates recognized its antimicrobial properties in water (Magner, 1992). The toxic effect of silver ions relies on the same chemical features as those of the AgNPs. When being exposed to silver ions, the bacterium experiences several forms of oxidative stress, mainly ROS which arise from Fenton chemistry. Ag(I) disrupts metabolic pathways that drive Fenton chemistry and lead to the overproduction of hydroxyl radicals and cell death (Morones-Ramirez <i>et al.</i>, 2013). At a concentration of 18.9 µM, all bacterial growth comes to an end (Zhao & Stevens, 1998). | + | The toxic effects of silver salts have been known since antiquity. Even Hippocrates recognized its antimicrobial properties in water (Magner, 1992). The toxic effect of silver ions relies on the same chemical features as those of the AgNPs. When being exposed to silver ions, the bacterium experiences several forms of oxidative stress, mainly ROS which arise from Fenton chemistry. Ag(I) disrupts metabolic pathways that drive Fenton chemistry and lead to the overproduction of hydroxyl radicals and cell death (Morones-Ramirez <i>et al.</i>, 2013). At a concentration of 18.9 µM, all bacterial growth comes to an end (Zhao & Stevens, 1998).</br> |
Silver is toxic in both of its forms: as a nanoparticle and as dissolved ions. Therefore an approach to decrease the toxic effect on the cell is needed. | Silver is toxic in both of its forms: as a nanoparticle and as dissolved ions. Therefore an approach to decrease the toxic effect on the cell is needed. | ||
</article> | </article> | ||
Line 67: | Line 67: | ||
<article> | <article> | ||
− | Copper is known for its toxic and bactericidal properties and is often used as an antimicrobial agent in form of copper nanoparticles (CuNPs) (Cioffi <i>et al.</i>, 2005). Recent studies revealed that the inactivation and bactericidal activity works in a size-dependent manner. The smaller a CuNP is, the higher is its inhibitory potential to bacteria. Furthermore, the toxicity is probably elicited in a strain-specific manner in <i>E. coli</i> obtained from different sources (Alum <i>et al.</i>, 2018). CuNPs’ toxic properties appear to result from oxidative stress and protein damage, DNA damage and membrane damage. The generation of hydroxyl peroxide by CuNPs is assumed to be the reason for the toxicity of CuNPs. Li <i>et al.</i> could observe 2013 the release of copper and the production of Cu(I) ions. | + | Copper is known for its toxic and bactericidal properties and is often used as an antimicrobial agent in form of copper nanoparticles (CuNPs) (Cioffi <i>et al.</i>, 2005). Recent studies revealed that the inactivation and bactericidal activity works in a size-dependent manner. The smaller a CuNP is, the higher is its inhibitory potential to bacteria. Furthermore, the toxicity is probably elicited in a strain-specific manner in <i>E. coli</i> obtained from different sources (Alum <i>et al.</i>, 2018). CuNPs’ toxic properties appear to result from oxidative stress and protein damage, DNA damage and membrane damage. The generation of hydroxyl peroxide by CuNPs is assumed to be the reason for the toxicity of CuNPs. Li <i>et al.</i> could observe 2013 the release of copper and the production of Cu(I) ions.</br> |
− | Copper is considered to be essential in small amounts to both human and bacteria (Burgess <i>et al.</i>, 1999). It plays an important role in electron-transfer reactions (Kaplan & Lutsenko, 2009). Yet copper ions can induce cell death and exhibit toxic effects. This is due to copper ions interfering with the cell proteins or enzymes by chelating sulfhydryl groups and peroxidizing the lipids of the cell membrane (Yeager, 1991). A broad variety of microorganisms, such as <i>E. coli</i>, could be proven to be inhibited in growth or killed by the exposure to Cu(II) (Ochoa-Herrera <i>et al.</i>, 2011). Furthermore, copper ions can interact with oxygen by catalyzing Haber-Weiss and/or Fenton reactions. This results in the generation of reactive oxygen species which can ultimately damage biomolecules (Halliwell, 2007; Halliwell & Gutteridge, 2015). | + | Copper is considered to be essential in small amounts to both human and bacteria (Burgess <i>et al.</i>, 1999). It plays an important role in electron-transfer reactions (Kaplan & Lutsenko, 2009). Yet copper ions can induce cell death and exhibit toxic effects. This is due to copper ions interfering with the cell proteins or enzymes by chelating sulfhydryl groups and peroxidizing the lipids of the cell membrane (Yeager, 1991). A broad variety of microorganisms, such as <i>E. coli</i>, could be proven to be inhibited in growth or killed by the exposure to Cu(II) (Ochoa-Herrera <i>et al.</i>, 2011). Furthermore, copper ions can interact with oxygen by catalyzing Haber-Weiss and/or Fenton reactions. This results in the generation of reactive oxygen species which can ultimately damage biomolecules (Halliwell, 2007; Halliwell & Gutteridge, 2015).</br> |
Copper is toxic in both of its forms: as a nanoparticle and as dissolved ions. Therefore an approach to decrease the toxic effect on the cell is needed. | Copper is toxic in both of its forms: as a nanoparticle and as dissolved ions. Therefore an approach to decrease the toxic effect on the cell is needed. | ||
</article> | </article> | ||
Line 75: | Line 75: | ||
<article> | <article> | ||
− | Iron is crucial for certain biological functions and necessary for the cell in order to work properly. Especially when it comes to electron transfer reactions iron as a cofactor is critical for the formation of biomolecules (Zhang, 2014). However, free non-bound iron bears risks for the cell. Iron regularly appears as a ferrous (Fe(II)) or as a ferric ion (Fe(III)) and is able to accept an electron from neighboring molecules which leads to the generation of ROS and causes damage to cellular components. The generation of ROS occurs by Fenton and Haber-Weiss reactions (Kehrer, 2000; Winterbourn, 1995). | + | Iron is crucial for certain biological functions and necessary for the cell in order to work properly. Especially when it comes to electron transfer reactions iron as a cofactor is critical for the formation of biomolecules (Zhang, 2014). However, free non-bound iron bears risks for the cell. Iron regularly appears as a ferrous (Fe(II)) or as a ferric ion (Fe(III)) and is able to accept an electron from neighboring molecules which leads to the generation of ROS and causes damage to cellular components. The generation of ROS occurs by Fenton and Haber-Weiss reactions (Kehrer, 2000; Winterbourn, 1995).</br> |
− | The desired iron nanoparticles shall be composed of Fe<sub>2</sub>O<sub>3 which is one of the most abundant transition metal oxides and ubiquitous in the environment (Bi & Xu, 2012). Toxic effects by these nanoparticles arise from the formation of ROS by converting H<sub>2</sub>O<sub>2</sub> or O<sub>2</sub> (Huang <i>et al.</i>, 2015). Further studies performed by Wang <i>et al.</i> (2017) regarding the photocatalytic degradation of DNA who found that the majority of intracellular damage especially concerning the DNA arises from ROS. | + | The desired iron nanoparticles shall be composed of Fe<sub>2</sub>O<sub>3</sub> which is one of the most abundant transition metal oxides and ubiquitous in the environment (Bi & Xu, 2012). Toxic effects by these nanoparticles arise from the formation of ROS by converting H<sub>2</sub>O<sub>2</sub> or O<sub>2</sub> (Huang <i>et al.</i>, 2015). Further studies performed by Wang <i>et al.</i> (2017) regarding the photocatalytic degradation of DNA who found that the majority of intracellular damage especially concerning the DNA arises from ROS.</br> |
</article> | </article> | ||
Line 82: | Line 82: | ||
<article> | <article> | ||
− | As most problems from heavy metals arise from the generation of ROS, the efforts to improve the resistance to the toxic effects need to focus on the repair of the damage of biomolecules and the prevention of further damage. | + | As most problems from heavy metals arise from the generation of ROS, the efforts to improve the resistance to the toxic effects need to focus on the repair of the damage of biomolecules and the prevention of further damage.</br> |
− | Molecular oxygen itself cannot easily oxidize another molecule due to its spin restriction (Farr & Kogoma, 1991). However, certain cases allow oxidation of molecules by molecular oxygen, e.g. the presence of a paramagnetic center other than that of the molecular oxygen and good catalysts for one-electron reduction such as the transition metals copper and iron. The arising ROS are mostly the superoxide anion (O<sub>2</sub><sup>-</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), hydroxyl radicals (•OH) and singlet oxygen (<sup>1</sup>O<sub>2</sub>) (Halliwell, 1991). | + | Molecular oxygen itself cannot easily oxidize another molecule due to its spin restriction (Farr & Kogoma, 1991). However, certain cases allow oxidation of molecules by molecular oxygen, e.g. the presence of a paramagnetic center other than that of the molecular oxygen and good catalysts for one-electron reduction such as the transition metals copper and iron. The arising ROS are mostly the superoxide anion (O<sub>2</sub><sup>-</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), hydroxyl radicals (•OH) and singlet oxygen (<sup>1</sup>O<sub>2</sub>) (Halliwell, 1991).</br> |
− | O<sub>2</sub><sup>-</sup> attacks thiols and ascorbate as well as iron sulfur clusters in proteins and thus disrupts the protein’s structure and leads to a loss of its function. Furthermore, it is able to reduce transition metals such as iron and copper, e.g. Cu(II) to Cu(I). It tends to form the highly reactive hydroperoxyl radical (•OOH) under acidic conditions. The degradation of the superoxide anion happens by spontaneous dismutation into hydrogen peroxide and molecular oxygen (Masoud <i>et al.</i>, 2015). | + | O<sub>2</sub><sup>-</sup> attacks thiols and ascorbate as well as iron sulfur clusters in proteins and thus disrupts the protein’s structure and leads to a loss of its function. Furthermore, it is able to reduce transition metals such as iron and copper, e.g. Cu(II) to Cu(I). It tends to form the highly reactive hydroperoxyl radical (•OOH) under acidic conditions. The degradation of the superoxide anion happens by spontaneous dismutation into hydrogen peroxide and molecular oxygen (Masoud <i>et al.</i>, 2015).</br> |
− | Hydrogen peroxide itself is reactive as well. The exact reaction mechanism in the cell is unknown due to its reaction speed. However, it is known that hydrogen peroxide reacts with reduced copper and/or iron ions to form hydroxyl radicals. As a weak oxidizing agent it attacks thiol groups and reduces glutathione (Liu <i>et al.</i>, 2015). | + | Hydrogen peroxide itself is reactive as well. The exact reaction mechanism in the cell is unknown due to its reaction speed. However, it is known that hydrogen peroxide reacts with reduced copper and/or iron ions to form hydroxyl radicals. As a weak oxidizing agent it attacks thiol groups and reduces glutathione (Liu <i>et al.</i>, 2015).</br> |
− | Hydroxyl radicals are highly reactive and react with almost every molecule. Since it is highly reactive, its reaction rate is limited by diffusion. The reactivity of hydroxyl radicals derives from its high standard electrode potential (+2.3 V). Therefore, it is able to oxidize almost any molecule other than ozone (Zhang <i>et al.</i>, 2018). | + | Hydroxyl radicals are highly reactive and react with almost every molecule. Since it is highly reactive, its reaction rate is limited by diffusion. The reactivity of hydroxyl radicals derives from its high standard electrode potential (+2.3 V). Therefore, it is able to oxidize almost any molecule other than ozone (Zhang <i>et al.</i>, 2018).</br> |
− | There are several origins for the different types of ROS: Superoxide anion is formed by autoxidation of distinct dehydrogenases and certain reductases, e.g. glutathione reductase. Non-enzymatic production is achieved by autoxidation of certain cellular components such as ubiquinols. Hydrogen peroxidase derives from several oxidases and the superoxide dismutase. UV radiation breaks it down into hydroxyl radicals (Mignolet-Spruyt <i>et al.</i>, 2016). Other mechanisms for the generation of hydroxyl radicals are the Fenton and/or Haber-Weiss reaction (Fagali <i>et al.</i>, 2015; Kehrer, 2000). | + | There are several origins for the different types of ROS: Superoxide anion is formed by autoxidation of distinct dehydrogenases and certain reductases, e.g. glutathione reductase. Non-enzymatic production is achieved by autoxidation of certain cellular components such as ubiquinols. Hydrogen peroxidase derives from several oxidases and the superoxide dismutase. UV radiation breaks it down into hydroxyl radicals (Mignolet-Spruyt <i>et al.</i>, 2016). Other mechanisms for the generation of hydroxyl radicals are the Fenton and/or Haber-Weiss reaction (Fagali <i>et al.</i>, 2015; Kehrer, 2000).</br> |
− | Haber-Weiss: Fe<sup>3+</sup> + •O<sub>2</sub><sup>-</sup> → Fe<sup>2+</sup> + O<sub>2</sub> | + | Haber-Weiss: Fe<sup>3+</sup> + •O<sub>2</sub><sup>-</sup> → Fe<sup>2+</sup> + O<sub>2</sub></br> |
− | Fenton: Fe<sup>2+</sup> + H<sub>2</sub>O<sub>2</sub> → Fe<sup>3+</sup> + OH<sup>-</sup> + •OH | + | Fenton: Fe<sup>2+</sup> + H<sub>2</sub>O<sub>2</sub> → Fe<sup>3+</sup> + OH<sup>-</sup> + •OH</br> |
− | In order to neutralize the ROS and repair the occured damage bacteria have different mechanisms they can rely on. Two types of superoxide dismutase (SOD) dismutate O<sub>2</sub><sup>-</sup> into H<sub>2</sub>O<sub>2</sub>: MnSOD and FeSOD (encoded by <i>sodA</i> and <i>sodB</i>) (Broxton & Culotta, 2016). Catalases (encoded by <i>katE</i> and <i>katG</i>) are able to disproportionate H<sub>2</sub>O<sub>2</sub> into the nontoxic components H<sub>2</sub>O and O<sub>2</sub> (Chaithawiwat <i>et al.</i>, 2016). Further detoxification is achieved by the alkyl hydroperoxide reductase Ahp (encoded by <i>ahpC</i> and <i>ahpF</i>) which scavenges various free organic hydroperoxides (Kamariah <i>et al.</i>, 2016). These genes are in <i>E. coli</i> under the control of various global regulators such as OxyR and SoxR. The regulators also promote the expression of genes involved in the repair of the damaged cell membranes, DNA and proteins and are activated by a conformational change induced by oxidative stress (Dubbs & Mongkolsuk, 2016; Seo <i>et al.</i>, 2015). | + | In order to neutralize the ROS and repair the occured damage bacteria have different mechanisms they can rely on. Two types of superoxide dismutase (SOD) dismutate O<sub>2</sub><sup>-</sup> into H<sub>2</sub>O<sub>2</sub>: MnSOD and FeSOD (encoded by <i>sodA</i> and <i>sodB</i>) (Broxton & Culotta, 2016). Catalases (encoded by <i>katE</i> and <i>katG</i>) are able to disproportionate H<sub>2</sub>O<sub>2</sub> into the nontoxic components H<sub>2</sub>O and O<sub>2</sub> (Chaithawiwat <i>et al.</i>, 2016). Further detoxification is achieved by the alkyl hydroperoxide reductase Ahp (encoded by <i>ahpC</i> and <i>ahpF</i>) which scavenges various free organic hydroperoxides (Kamariah <i>et al.</i>, 2016). These genes are in <i>E. coli</i> under the control of various global regulators such as OxyR and SoxR. The regulators also promote the expression of genes involved in the repair of the damaged cell membranes, DNA and proteins and are activated by a conformational change induced by oxidative stress (Dubbs & Mongkolsuk, 2016; Seo <i>et al.</i>, 2015).</br> |
In order to increase the cell’s resistance to oxidative stress a sophisticated approach is needed. An overexpression of the oxidative stress dependent regulators SoxR and OxyR should improve the cell’s ability to cope with an elevated number of ROS. Various combinations of the defense mechanisms are tested in order to determine the ideal defense against oxidative stress in order to maximize the longevity in presence of heavy metals. Agents like phytochelatin which are rich in cysteine and/or histidine residues are meant to bind free metal ions to lower the potential for Fenton and/or Haber-Weiss reactions. | In order to increase the cell’s resistance to oxidative stress a sophisticated approach is needed. An overexpression of the oxidative stress dependent regulators SoxR and OxyR should improve the cell’s ability to cope with an elevated number of ROS. Various combinations of the defense mechanisms are tested in order to determine the ideal defense against oxidative stress in order to maximize the longevity in presence of heavy metals. Agents like phytochelatin which are rich in cysteine and/or histidine residues are meant to bind free metal ions to lower the potential for Fenton and/or Haber-Weiss reactions. | ||
</article> | </article> |
Revision as of 12:55, 26 August 2018
/* HQ CSS*/ .firstHeading { display: none; }
.mw-content-text { display: none; }
.logo_2018 { display: none; }
- globalWrapper {
padding: 0px; margin: 0px; padding-bottom: 0px; }
- content {
margin-left:0px; padding:0px; width:100%; margin-top: -7px; }
.mw-content-ltr ul, .mw-content-rtl .mw-content-ltr ul{ margin:0px; }
- top_title {
margin-bottom: 0px; }
- top_menu_14{
border-bottom: 0px solid black; }
- HQ_page p {
margin: 0; }
/*NAVBAR*/
@charset "UTF-8";
body{ margin-top:0px; }
.navigation { height: 70px; background: #002a5c; position: fixed; width:100%; text-decoration: none; }
.brand { position: absolute; padding-left: 20px; float: left; line-height: 70px; text-transform: uppercase; font-size: 1.4em; width: 300px; }
.logo-img{ width: 70%; margin-top: 1%; }
@media only screen and (max-width: 1350px) { .logo-img{ width: 70%; margin-top: 2%; }
.navigation{ position: absolute; }
}
@media only screen and (max-width: 790px) { .logo-img{ width: 70%; margin-top: 3%; }
.navigation{ position: absolute; }
}
.brand a,
.brand a:visited {
color: #ffffff;
text-decoration: none;
}
.nav-container { max-width: auto; margin: 0 auto; text-decoration: none; }
nav { float: right; text-decoration: none; } nav ul { list-style: none; margin: 0; padding: 0; text-decoration: none; } nav ul li { float: left; position: relative; text-decoration: none; } nav ul li a, nav ul li a:visited, nav ul li a:focus{ display: block; padding: 0 20px; line-height: 70px; background: #002a5c; color: #ffffff; text-decoration: none; margin-bottom:-4px; border-color:#002a5c; } nav ul li a:hover, nav ul li a:visited:hover { background: #4d9dff; color: #ffffff; text-decoration: none; } nav ul li a:not(:only-child):after, nav ul li a:visited:not(:only-child):after { padding-left: 4px; content: " ▾"; text-decoration: none; } nav ul li ul li { min-width: 190px; text-decoration: none; } nav ul li ul li a { padding: 15px; line-height: 20px; text-decoration: none; text-decoration: none; }
.nav-dropdown { position: absolute; display: none; z-index: 1; box-shadow: 0 3px 12px rgba(0, 0, 0, 0.15); text-decoration: none; }
/* Mobile navigation */ .nav-mobile { display: none; position: absolute; top: 0; right: 0; background: #002a5c; height: 70px; width: 70px; }
@media only screen and (max-width: 1350px) {
.nav-mobile {
display: block;
}
nav { width: 100%; padding: 70px 0 15px; } nav ul { display: none; max-height: 280px; overflow-y: auto; } nav ul li { float: none; } nav ul li a { padding: 15px; line-height: 20px; text-decoration: none; } nav ul li ul li a { padding-left: 30px; text-decoration: none; }
.nav-dropdown { position: static; } } @media screen and (min-width: 1351px) { .nav-list { display: block !important; } }
- nav-toggle {
position: absolute; left: 18px; top: 22px; cursor: pointer; padding: 10px 35px 16px 0px; max-height: 280px; overflow-y: auto; }
- nav-toggle span,
- nav-toggle span:before,
- nav-toggle span:after {
cursor: pointer; border-radius: 1px; height: 5px; width: 35px; background: #ffffff; position: absolute; display: block; content: ""; transition: all 300ms ease-in-out; }
- nav-toggle span:before {
top: -10px; }
- nav-toggle span:after {
bottom: -10px; }
- nav-toggle.active span {
background-color: transparent; }
- nav-toggle.active span:before, #nav-toggle.active span:after {
top: 0; }
- nav-toggle.active span:before {
transform: rotate(45deg); }
- nav-toggle.active span:after {
transform: rotate(-45deg); }
article { max-width: 1000px; margin: 0 auto; padding: 10px; line-height: 1.5; }
.article { max-width: 1000px; margin: 0 auto; padding: 10px; line-height: 1.5; padding-right: 5%; padding-left : 5%;
}
/* W3 Schools templates*/
.w3-top,.w3-bottom{position:fixed;width:100%;z-index:1;} .w3-top{top:0;} .w3-bottom{bottom:0;}
- footer{display:block;width:98%}
.w3-container:after,.w3-container:before{content:"";display:table;clear:both;width:98%;}
.w3-container{}
.w3-padding-32{padding-top:32px!important;padding-bottom:32px!important;}
.w3-center .w3-bar{display:inline-block;width:auto;}
.w3-center{text-align:center!important;}
.w3-black,.w3-hover-black:hover{color:#fff!important;background-color:#000!important;}
.w3-xlarge{font-size:24px!important;}
/*OWN STYLES*/
body { font-family: "Lato", sans-serif; }
@media only screen and (min-width: 1010px){ .main_content {
background-color: white; border: 1px solid #000000; border-radius: 0px; box-shadow: 1px 1px 3px rgba(0, 0, 0, 0.35); min-height: 100px; border-top: none; border-bottom: none; margin-left:25%; margin-right:25%; padding-bottom: 4%; min-height: 420px; position: sticky; margin-top: -100px; } }
@media only screen and (max-width: 1009px){ .main_content {
background-color: white; border: 1px solid #000000; border-radius: 0px; box-shadow: 1px 1px 3px rgba(0, 0, 0, 0.35); min-height: 100px; border-top: none; border-bottom: none; margin-left:0; margin-right:0; padding-bottom: 4%; position: sticky; margin-top: -100px; } }
- container{
position: relative; min-height: 100%; height: 100%; }
.container{ padding-top:0px; background-color: #001633; }
.section{ margin: 1%; }
.half{ max-width: 48%; }
.half.left { float: left; margin-right: 1%; }
.half.right { float: right; margin-left: 1%;
}
article, .article { text-align: justify; display: block; margin: auto; font-size: 16px; padding-bottom: 20px; }
article, .article, .contentline { width: 90%; font-size: 16px; padding-bottom: 30px; }
.contentline article, .contentline .article { width: 100%; }
h1, h2, h3, h4, h5, h6 { width: 92%; margin: auto; margin-top: 0px; padding-top: 20px; padding-bottom: 15px; }
.p { text-align: justify; }
.title { font-size: 40px; padding-top: 5%; padding-left: 3%; padding-bottom: 40px; font-weight: bold; background-color: rgb(255,255,255); margin-top: -70px; position:sticky; line-height:1.5em; text-align:left; }
h2 { padding-left: 3%; font-size:14; }
br { display: block; /* makes it have a width */ content: ""; /* clears default height */ margin-top: 20px; /* change this to whatever height you want it */ }
p { font-size:14px; }
body { padding-top: 0px; }
article{
padding-right: 5%;
padding-left : 5%;
}
- page-arrow-top {
display: none; cursor: pointer; padding: 0; margin: 0; position: fixed; bottom: 20px; right: 50px; }
.half { width: 48%; }
.half.left { float: left; margin-right: 1%; }
.half.right { float: right; margin-left: 1%; }
.sidenavi{
margin-top: 50px; margin-left: 4%; display: block; position: -webkit-sticky; position: sticky; top: 150px; float: left; background-color: #001633; border-radius: 30px; border-color: white; border-style: solid; }
.side_list{
display: block;
margin-right: 10px;
margin-bottom: 15px;
margin-top: 10px;
margin-left: 10px;
color: white;
}
.side_link{ color: white; font-size: 20px; text-decoration:none; padding: 10px; }
.side_list > a:hover{ text-decoration:none; color: white; }
.side_list > a{ text-decoration:none; font-size: 18px; padding: 10px; width:100%; cursor: pointer; color: white; }
@media only screen and (max-width: 1150px){
.sidenavi{
margin-top: 50px; margin-left: 1%; display: block; position: -webkit-sticky; position: sticky; top: 150px; float: left; background-color: #001633; border-radius: 30px; border-color: white; border-style: solid; }
.side_list{ display: block; margin-right: 10px; margin-bottom: 15px; margin-top: 10px; margin-left: 10px; color: white; }
.side_link{ color: white; font-size: 10px; text-decoration:none; padding: 10px; }
.side_list > a:hover{ text-decoration:none; color: white; }
.side_list > a{ text-decoration:none; font-size: 16px; padding: 12px; width:100%; cursor: pointer; color: white; }
}
@media only screen and (max-width: 1685px){
.sidenavi{
margin-top: 50px; margin-left: 1%; display: block; position: -webkit-sticky; position: sticky; top: 150px; float: left; background-color: #001633; border-radius: 30px; border-color: white; border-style: solid; }
.side_list{ display: block; margin-right: 10px; margin-bottom: 15px; margin-top: 10px; margin-left: 10px; color: white; }
.side_link{ color: white; font-size: 10px; text-decoration:none; padding: 10px; }
.side_list > a:hover{ text-decoration:none; color: white; }
.side_list > a{ text-decoration:none; font-size: 16px; padding: 8px; width:100%; cursor: pointer; color: white; }
}
@media only screen and (max-width: 1300px){
.sidenavi{
display: none;
} }
figure {
text-align: center;
margin-bottom: 30px;
}
figcaption{ text-align: justify; font-size: 13px; margin-top:10px; }
.figure.eighty { width:80%; }
.figure.ten { width:10%; }
.figure.twenty { width:20%; }
.figure.thirty { width:30%; }
.figure.fourty { width:40%; }
.figure.fifty { width:50%; }
.figure.sixty { width:60%; }
.figure.seventy { width:70%; }
.figure.ninety { width:90%; }
.figure.hundred { width:100%; }
table, th, td {
border: 1px solid black;
border-collapse: collapse;
font-size:17px;
}
th, td {
padding: 15px;
text-align: left;
}
table#t01 tr:first-child td{
background-color: #eee;
}
table#t01 tr td:first-child { background-color: #eee; color: black; }
table.centern{
margin-left:15%;
margin-right:15%;
margin-top: 100px;
margin-top: 5%;
}
- HQ_page table {
border: 1px solid #ccc; border-collapse: collapse; width: 70%; margin: auto; margin-bottom: 0px; margin-top: 100px; margin-right: auto; margin-left: auto; }
hr { margin-top: 10%; margin-bottom: 20px; border: 0; text-align: center; border-top: 2px solid #000000; margin-left: auto; margin-right: auto;
}
.reftext { display: block; text-align: justify; margin-left: 5%; margin-right: 5%; font-size: 14px; padding-bottom: 20px; line-height: 20px; }
/*Footer*/ .fa-facebook-official:before { content: "\f230"; color: white; }
.fa-instagram:before {
content: "\f230";
color: white;
}
.fa-twitter:before { content: "\f230"; color: white; }
- myDIV {
margin-top: 10px; display:none; }
.refbtn{ background-color: white; border: none; font-size: 150%; font-weight: bold; color: black; margin-left: 5%; margin-bottom: 26px; margin-top: 30px;
}
a.shifted-anchor { display: block; position:relative; top: -100px; }
- active{
text-decoration: none; }
html,body { background-color: #001633; }
- myVideo {
position: static; top:0; left:0 right: 0; bottom: 0; height: auto; margin-top: 70px; z-index:1; }
.title_picture{
width:100%;
padding-top:40px;
}
@-webkit-keyframes animateBubble {
0% {
margin-top: 310%;
}
100% {
margin-top: 5%;
}
}
@-moz-keyframes animateBubble { 0% { margin-top: 310%; } 100% { margin-top: 5%; } }
@keyframes animateBubble { 0% { margin-top: 310%; } 100% { margin-top: 5%; } }
@-webkit-keyframes animateBubbleSeite { 0% { margin-top: 40px; } 100% { margin-top: -200%; } }
@-moz-keyframes animateBubbleSeite { 0% { margin-top: 40px; } 100% { margin-top: -200%; } }
@keyframes animateBubbleSeite { 0% { margin-top: 40px; } 100% { margin-top: -200%; } }
@-webkit-keyframes sideWays {
0% {
margin-left:0px;
}
100% {
margin-left:50px;
}
}
@-moz-keyframes sideWays { 0% { margin-left:0px; } 100% { margin-left:50px; } }
@keyframes sideWays { 0% { margin-left:0px; } 100% { margin-left:50px; } }
.s1 {
-webkit-animation: animateBubbleSeite 120s linear infinite, sideWays 2s ease-in-out infinite alternate;
-moz-animation: animateBubbleSeite 120s linear infinite, sideWays 2s ease-in-out infinite alternate;
animation: animateBubbleSeite 120s linear infinite, sideWays 2s ease-in-out infinite alternate;
left: 5%; top: 95%; z-index:1; overflow: hidden;
-webkit-transform: scale(0.1); -moz-transform: scale(0.1); transform: scale(0.1); }
.x1 { -webkit-animation: animateBubble 100s linear infinite, sideWays 2s ease-in-out infinite alternate; -moz-animation: animateBubble 100s linear infinite, sideWays 2s ease-in-out infinite alternate; animation: animateBubble 100s linear infinite, sideWays 2s ease-in-out infinite alternate;
left: -5%; top: 20%; z-index:1; overflow: hidden;
-webkit-transform: scale(0.1); -moz-transform: scale(0.1); transform: scale(0.1); }
.x2 { -webkit-animation: animateBubble 80s linear infinite, sideWays 4s ease-in-out infinite alternate; -moz-animation: animateBubble 80s linear infinite, sideWays 4s ease-in-out infinite alternate; animation: animateBubble 80s linear infinite, sideWays 4s ease-in-out infinite alternate;
left: 5%; top: 20%; z-index:1; overflow: hidden; -webkit-transform: scale(0.2); -moz-transform: scale(0.2); transform: scale(0.2); }
.x3 { -webkit-animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate; -moz-animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate; animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate;
left: 10%; top: 20%; overflow: hidden; z-index:1; -webkit-transform: scale(0.2); -moz-transform: scale(0.2); transform: scale(0.2); }
.x4 { -webkit-animation: animateBubble 90s linear infinite, sideWays 3s ease-in-out infinite alternate; -moz-animation: animateBubble 90s linear infinite, sideWays 3s ease-in-out infinite alternate; animation: animateBubble 90s linear infinite, sideWays 3s ease-in-out infinite alternate;
left: 20%; top: 20%; overflow: hidden; z-index:1; -webkit-transform: scale(0.2); -moz-transform: scale(0.2); transform: scale(0.2); }
.x5 { -webkit-animation: animateBubble 70s linear infinite, sideWays 4s ease-in-out infinite alternate; -moz-animation: animateBubble 70s linear infinite, sideWays 4s ease-in-out infinite alternate; animation: animateBubble 70s linear infinite, sideWays 4s ease-in-out infinite alternate;
left: 30%; top: 20%; overflow: hidden; z-index:1; -webkit-transform: scale(0.1); -moz-transform: scale(0.1); transform: scale(0.1); }
.x6 { -webkit-animation: animateBubble 115s linear infinite, sideWays 2s ease-in-out infinite alternate; -moz-animation: animateBubble 115s linear infinite, sideWays 2s ease-in-out infinite alternate; animation: animateBubble 115s linear infinite, sideWays 2s ease-in-out infinite alternate;
left: 50%; top: 20%; overflow: hidden; z-index:1; -webkit-transform: scale(0.1); -moz-transform: scale(0.1); transform: scale(0.1); }
.x7 { -webkit-animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate; -moz-animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate; animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate;
left: 65%; top: 20%; overflow: hidden; z-index:1; -webkit-transform: scale(0.1); -moz-transform: scale(0.1); transform: scale(0.1); }
.x8 { -webkit-animation: animateBubble 100s linear infinite, sideWays 3s ease-in-out infinite alternate; -moz-animation: animateBubble 100s linear infinite, sideWays 3s ease-in-out infinite alternate; animation: animateBubble 100s linear infinite, sideWays 3s ease-in-out infinite alternate;
left: 80%; top: 20%; overflow: hidden; z-index:1; -webkit-transform: scale(0.2); -moz-transform: scale(0.2); transform: scale(0.2); }
.x9 { -webkit-animation: animateBubble 80s linear infinite, sideWays 4s ease-in-out infinite alternate; -moz-animation: animateBubble 80s linear infinite, sideWays 4s ease-in-out infinite alternate; animation: animateBubble 80s linear infinite, sideWays 4s ease-in-out infinite alternate;
left: 90%; top: 20%; overflow: hidden; z-index:1; -webkit-transform: scale(0.1); -moz-transform: scale(0.1); transform: scale(0.1); }
.x10 { -webkit-animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate; -moz-animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate; animation: animateBubble 120s linear infinite, sideWays 2s ease-in-out infinite alternate;
left: 80%; top: 20%; overflow: hidden; z-index:1; -webkit-transform: scale(0.1); -moz-transform: scale(0.1); transform: scale(0.1); }
.bubble {
-webkit-border-radius: 50%;
-moz-border-radius: 50%;
border-radius: 50%;
-webkit-box-shadow: 0 20px 30px rgba(0, 0, 0, 0.2), inset 0px 10px 30px 5px rgba(255, 255, 255, 1); -moz-box-shadow: 0 20px 30px rgba(0, 0, 0, 0.2), inset 0px 10px 30px 5px rgba(255, 255, 255, 1); box-shadow: 0 20px 30px rgba(0, 0, 0, 0.2), inset 0px 10px 30px 5px rgba(255, 255, 255, 1);
height: 200px; position: absolute; width: 200px; }
.bubble:after { background: -moz-radial-gradient(center, ellipse cover, rgba(255,255,255,0.5) 0%, rgba(255,255,255,0) 0%); /* FF3.6+ */ background: -webkit-gradient(radial, center center, 0px, center center, 100%, color-stop(0%,rgba(255,255,255,0.5)), color-stop(0%,rgba(255,255,255,0))); /* Chrome,Safari4+ */ background: -webkit-radial-gradient(center, ellipse cover, rgba(255,255,255,0.5) 0%,rgba(255,255,255,0) 0%); /* Chrome10+,Safari5.1+ */ background: -o-radial-gradient(center, ellipse cover, rgba(255,255,255,0.5) 0%,rgba(255,255,255,0) 0%); /* Opera 12+ */ background: -ms-radial-gradient(center, ellipse cover, rgba(255,255,255,0.5) 0%,rgba(255,255,255,0) 0%); /* IE10+ */ background: radial-gradient(ellipse at center, rgba(255,255,255,0.5) 0%,rgba(255,255,255,0) 0%); /* W3C */ filter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#80ffffff', endColorstr='#00ffffff',GradientType=1 ); /* IE6-9 fallback on horizontal gradient */
-webkit-border-radius: 50%; -moz-border-radius: 50%; border-radius: 50%;
-webkit-box-shadow: inset 0 20px 30px rgba(255, 255, 255, 0.3); -moz-box-shadow: inset 0 20px 30px rgba(255, 255, 255, 0.3); box-shadow: inset 0 20px 30px rgba(255, 255, 255, 0.3);
content: ""; height: 180px; left: 10px; position: absolute; width: 180px; }
@media only screen and (max-width: 1700px) {
.bubble.x1, .bubble.x2, .bubble.x8, .bubble.x9, .bubble.x10{ display:none; }
}
@media only screen and (max-width: 1200px) {
.bubble.x1, .bubble.x2, .bubble.x7, .bubble.x8, .bubble.x9, .bubble.x10{ display:none; } }
.timer_box{
border: white; border-style: solid; padding-bottom: 125px; padding-left: 10px; padding_top:10px; marging-bottom: 100px;
}
- gold {
float: left; font-size: 50px; margin-top: 10px; width: 50%; color:white;
text-align: center;
}
- gold_text {
float: left; font-size: 20px; margin-top: 0px; width: 50%; color:white;
text-align: center; }
- silver {
float: left; text-align: center; font-size: 50px; margin-top: 10px; width: 50%; color:white;
}
- silver_text {
float: left; text-align: center; font-size: 20px; margin-top: 0px; width: 50%; color:white;
}
.img_text{ text-align:center; position:absolute; }
- home_imgs {
margin-top:100px; width:60%;
}
@media only screen and (max-width: 1300px) {
- home_imgs{
width:70%;
}
- silver{
font-size: 30px;
}
- gold{
font-size: 30px;
}
- silver_text{
font-size: 20px;
}
- gold_text{
font-size: 20px; }
}
@media only screen and (max-width: 900px) {
.timer_box{
border: white; border-style: solid; padding-bottom: 100px; padding-left: 10px; padding_top:10px; marging-bottom: 100px;
}
- home_imgs{
margin-top:50px; width:90%; }
- silver{
font-size: 20px;
}
- gold{
font-size: 20px;
}
- silver_text{
font-size: 15px;
}
- gold_text{
font-size: 15px; }
}
@media only screen and (max-width: 600px) {
.timer_box{
border: white; border-style: solid; padding-bottom: 100px; padding-left: 10px; padding_top:10px; marging-bottom: 100px;
}
- home_imgs{
margin-top:15px; width:100%; }
- silver{
font-size: 15px;
}
- gold{
font-size: 15px;
}
- silver_text{
font-size: 10px;
}
- gold_text{
font-size: 10px; }
}
@media only screen and (max-width: 400px) {
.timer_box{
border: white; border-style: solid; padding-bottom: 50px; padding-left: 10px; padding_top:10px; marging-bottom: 100px;
}
- home_imgs{
margin-top:5px; width:100%; }
- silver{
font-size: 10px;
}
- gold{
font-size: 10px;
}
- silver_text{
font-size: 5px;
}
- gold_text{
font-size: 5px; }
}