Line 77: | Line 77: | ||
</article> | </article> | ||
+ | |||
+ | |||
+ | <h2>Human Ferritin</h2> | ||
+ | |||
+ | <article> | ||
+ | Like bacterioferritin and bacterial ferritin, human ferritin consists of 24 four-helix bundles, which self-assemble to form a hollow and spherical protein. These bundles can either be heavy or light chains. It is approximately 500kDa big with an inner diameter of 8nm and an outer diameter of 12nm. A total of up to 4500 atoms can be stored in its cavity. Pores in the shell allow the diffusion of iron ions into the interior of the ferritin (Briat and Lobréaux, 1997; Butts et al., 2008; Pozzi et al., 2015). | ||
+ | </article> | ||
+ | |||
+ | <article> | ||
+ | The loading of the ferritin starts with Fe(II) state ions passing through the pores into the ferritin. In the cavity of the ferritin, the Fe(II) state ions are oxidized to Fe(III) state ions by fero oxidoreductase activity of the ferritin subunits. Thus, biomineralization of Fe(III) state ions takes place at the inner surface of the ferritin (Briat and Lobréaux, 1997). | ||
+ | </article> | ||
+ | |||
+ | <article> | ||
+ | During the release of iron ions of the ferritins cavity, the Fe(III) ions are reduced again into Fe(II) ions. These are released from the crystalline structures and attract oxygen atoms. The ions thus become soluble and can leave the interior of the ferritin through the pores (Casiday and Frey, 2000). | ||
+ | </article> | ||
+ | |||
+ | <article> | ||
+ | Human ferritin can not only form iron nanoparticles, but also nanoparticles of e.g. gold or silver ions(Butts et al., 2008). This makes human ferritin suitable for the recycling of valuable metal ions. | ||
+ | </article> | ||
+ | |||
<!-- | <!-- | ||
<figure role="group"> | <figure role="group"> | ||
Line 115: | Line 135: | ||
<div id="myDIV" class="reftext"> | <div id="myDIV" class="reftext"> | ||
+ | <b> Briat, J.-F. and Lobréaux, S. (1997)</b>. Iron transport and storage in plants. Trends Plant Sci. 2: 187–193.</br> | ||
+ | <b> Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008)</b>. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.</br> | ||
+ | <b> Casiday, R. and Frey, R. (2000)</b>.Ferritin, the Iron-Storage Protein.: 25.</br> | ||
<b> Iwahori, K., Takagi, R., Kishimoto, N., & Yamashita, I. (2011)</b>. A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Materials Letters, 65(21-22), 3245-3247.</br> | <b> Iwahori, K., Takagi, R., Kishimoto, N., & Yamashita, I. (2011)</b>. A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Materials Letters, 65(21-22), 3245-3247.</br> | ||
<b> Jacobs, J. F., Hasan, M. N., Paik, K. H., Hagen, W. R., & van Loosdrecht, M. (2010)</b>. Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and bioengineering, 105(5), 918-923.</br> | <b> Jacobs, J. F., Hasan, M. N., Paik, K. H., Hagen, W. R., & van Loosdrecht, M. (2010)</b>. Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and bioengineering, 105(5), 918-923.</br> | ||
<b>Massé, E., & Gottesman, S. (2002).</b> A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, 99(7), 4620-4625.</br> | <b>Massé, E., & Gottesman, S. (2002).</b> A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, 99(7), 4620-4625.</br> | ||
+ | <b>Pozzi, C., Di Pisa, F., Bernacchioni, C., Ciambellotti, S., Turano, P., and Mangani, S. (2015)</b>. Iron binding to human heavy-chain ferritin. Acta Crystallogr. D Biol. Crystallogr. 71: 1909–1920.</br> | ||
<b>Rivera, M. (2017)</b>. Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.</br> | <b>Rivera, M. (2017)</b>. Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.</br> | ||
<b>Rivera, M. (2017)</b>. Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.</br> | <b>Rivera, M. (2017)</b>. Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.</br> | ||
<b>Yoshizawa, K., Iwahori, K., Sugimoto, K., & Yamashita, I. (2006)</b>. Fabrication of gold sulfide nanoparticles using the protein cage of apoferritin. Chemistry Letters, 35(10), 1192-1193.</br> | <b>Yoshizawa, K., Iwahori, K., Sugimoto, K., & Yamashita, I. (2006)</b>. Fabrication of gold sulfide nanoparticles using the protein cage of apoferritin. Chemistry Letters, 35(10), 1192-1193.</br> | ||
− | + | ||
+ | <b>Zhang, L., Swift, J., Butts, C.A., Yerubandi, V., and Dmochowski, I.J. (2007)</b>.Structure and activity of apoferritin-stabilized gold nanoparticles. J. Inorg. Biochem. 101: 1719–1729.</br> | ||
</div> | </div> |
Revision as of 22:40, 12 October 2018
Iron Uptake by Ferritin
Human Ferritin
Briat, J.-F. and Lobréaux, S. (1997). Iron transport and storage in plants. Trends Plant Sci. 2: 187–193.
Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008). Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.
Casiday, R. and Frey, R. (2000).Ferritin, the Iron-Storage Protein.: 25.
Iwahori, K., Takagi, R., Kishimoto, N., & Yamashita, I. (2011). A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Materials Letters, 65(21-22), 3245-3247.
Jacobs, J. F., Hasan, M. N., Paik, K. H., Hagen, W. R., & van Loosdrecht, M. (2010). Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and bioengineering, 105(5), 918-923.
Massé, E., & Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, 99(7), 4620-4625.
Pozzi, C., Di Pisa, F., Bernacchioni, C., Ciambellotti, S., Turano, P., and Mangani, S. (2015). Iron binding to human heavy-chain ferritin. Acta Crystallogr. D Biol. Crystallogr. 71: 1909–1920.
Rivera, M. (2017). Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.
Rivera, M. (2017). Bacterioferritin: structure, dynamics, and protein–protein interactions at play in iron storage and mobilization. Accounts of chemical research, 50(2), 331-340.
Yoshizawa, K., Iwahori, K., Sugimoto, K., & Yamashita, I. (2006). Fabrication of gold sulfide nanoparticles using the protein cage of apoferritin. Chemistry Letters, 35(10), 1192-1193.
Zhang, L., Swift, J., Butts, C.A., Yerubandi, V., and Dmochowski, I.J. (2007).Structure and activity of apoferritin-stabilized gold nanoparticles. J. Inorg. Biochem. 101: 1719–1729.