Line 64: | Line 64: | ||
− | <br/><h2>Design of a | + | <br/><h2>Design of a Cross-flow Bioreactor</h2> |
− | We designed a | + | We designed a cross-flow bioreactor perfectly adapted to filtering heavy metals out of mining drainage (MD) using genetically engineered <i>Escherichia coli</i>. Bacteria are retained in a reaction chamber while a large volume gets pumped through the chamber. The cells take up the heavy metals leading to an intracellular accumulation. The application was improved by user feedback and modeling and is now easy to run. It can easily be reconstructed by using the building plans we offer in our wiki. Furthermore, our device tackles the difficulty of applying GMOs to extract valuables out of large volumes and enables the safe application of GMOs outside the laboratory.</br> |
− | The task of scavenging metal ions from MD poses a great challenge to conventional cultivation strategies. Not only is the MD toxic to cells due to its elevated concentrations of sodium chloride and heavy metal ions like iron and copper. The shear amount of MD which has to be processed poses a problem in its own right. We tackle the toxic effects of heavy metals by our approach on anti-oxidants and anti-toxic measures | + | The task of scavenging metal ions from MD poses a great challenge to conventional cultivation strategies. Not only is the MD toxic to cells due to its elevated concentrations of sodium chloride and heavy metal ions like iron and copper. The shear amount of MD which has to be processed poses a problem in its own right. We tackle the toxic effects of heavy metals by our approach on anti-oxidants and <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Toxicity_Theory">anti-toxic measures</a> leading to an improved cell viability.</br> |
To solve the problem of the large MD volume that has to be processed and, after our first assessment indicated that cultivating cells in such a large volume would be difficult and further complicate downstream processing (e.g. filtering of the biomass), we decided to construct a suitable hardware. Therefore, we designed a prototype for a customized cross-flow bioreactor adapted to the task of filtering large quantities of MD. The system comprises two core units: A reaction chamber for containing the cells (“reactor unit”) and a larger reservoir area providing mining drainage (“reservoir unit”) (figure 1).</br> | To solve the problem of the large MD volume that has to be processed and, after our first assessment indicated that cultivating cells in such a large volume would be difficult and further complicate downstream processing (e.g. filtering of the biomass), we decided to construct a suitable hardware. Therefore, we designed a prototype for a customized cross-flow bioreactor adapted to the task of filtering large quantities of MD. The system comprises two core units: A reaction chamber for containing the cells (“reactor unit”) and a larger reservoir area providing mining drainage (“reservoir unit”) (figure 1).</br> | ||
Bild des Prototypen einfügen | Bild des Prototypen einfügen | ||
− | The core units are connected by silicon tubes. The reactor unit is charged with genetically engineered Escherichia coli cells able to scavenge metal ions from the MD. Homogeneity is guaranteed by usage of a stir bar simulating a stirrer. The high concentration of bacterial cells is maintained by applying a filter membrane system to each port, preventing any living organism from the MD to contaminate the reaction unit or the E. coli cells to leave the reactor unit. Possible blocking of the membrane system because of filter cake could simply be prevented by reversing the flow direction. This is enabled by using a peristaltic pump with reversible pumping direction per tube. After the desired incubation time of the cells with the substrate medium, the cells in the reactor unit can be harvested by usage of the other two ports to the reactor unit.</br> | + | The core units are connected by silicon tubes. The reactor unit is charged with genetically engineered <i>Escherichia coli</i> cells able to scavenge metal ions from the MD. Homogeneity is guaranteed by usage of a stir bar simulating a stirrer. The high concentration of bacterial cells is maintained by applying a filter membrane system to each port, preventing any living organism from the MD to contaminate the reaction unit or the <i>E. coli</i> cells to leave the reactor unit. Possible blocking of the membrane system because of filter cake could simply be prevented by reversing the flow direction. This is enabled by using a peristaltic pump with reversible pumping direction per tube. After the desired incubation time of the cells with the substrate medium, the cells in the reactor unit can be harvested by usage of the other two ports to the reactor unit.</br> |
However, after performing several tests we concluded that this prototype does not work the way it is intended to. Due to the speed of cells plugging the membrane filter system, it was not be possible to cycle the whole content of the reservoir unit through the system. The substrate medium was pumped in the reverse direction. However, since this event occurred rather quickly, only a small quantity of the MD was used for the incubation, leading to an incomplete process and limiting the yield. Therefore, we came up with a new design for the improvement of the desired cross-flow bioreactor. The basic design is maintained while substantial changes have been introduced to the reactor unit, in particular the filter membrane system.</br> | However, after performing several tests we concluded that this prototype does not work the way it is intended to. Due to the speed of cells plugging the membrane filter system, it was not be possible to cycle the whole content of the reservoir unit through the system. The substrate medium was pumped in the reverse direction. However, since this event occurred rather quickly, only a small quantity of the MD was used for the incubation, leading to an incomplete process and limiting the yield. Therefore, we came up with a new design for the improvement of the desired cross-flow bioreactor. The basic design is maintained while substantial changes have been introduced to the reactor unit, in particular the filter membrane system.</br> | ||
Bild des neuen Reaktors einfügen | Bild des neuen Reaktors einfügen |
Revision as of 15:45, 13 October 2018
Proof of Concept
Raut, N. C., & Al-Shamery, K. (2018). Inkjet printing metals on flexible materials for plastic and paper electronics. Journal of Materials Chemistry C, 6(7), 1618-1641.