Eschneider (Talk | contribs) |
|||
Line 182: | Line 182: | ||
</footer> | </footer> | ||
− | <img id="page-arrow-top" src="https://static.igem.org/mediawiki/2018/ | + | <img id="page-arrow-top" src="https://static.igem.org/mediawiki/2018/7/7e/T--Bielefeld-CeBiTec--top_arrow_white_vk.png" style="width:3%" onclick="topFunction()"></img> |
</div> | </div> |
Revision as of 20:55, 14 October 2018
Copper Accumulation System
Introduction
Since copper is toxic to all types of cells (Ladomersky & Petris, 2015), the presence of transporters for the active and selective uptake of copper ions may initially come as a surprise. But copper also carries out important functions in many cells. As a cofactor for many different enzymes such as superoxide dismutase it is primarily involved in electron transfer, dioxygen transport and activation (Solomon et al., 2014). Accordingly, there must be natural absorption mechanisms for the trace element both into the periplasm and the cytoplasm. Nevertheless, non-bonded, dissolved copper in particular is very toxic, so there are also efficient export systems in E. coli to remove excess copper (Rensing & Grass, 2003). In order to create an efficient accumulation system for copper ions, highly selective uptake systems must be expressed on the one hand and existing export systems must be suppressed on the other.
Preventing Copper Export
Copper Import
In order to increase the concentration of copper ions further, the P-type ATPase HmtA from P. aeruginosa can be used. It actively transports copper ions across the cytoplasmic membrane into the cytoplasm (Lewinsohn, Lee & Rees, 2009). As with oprC, the homolog from the non-pathogenic P. brassicacearum 3Re2-7 with a protein identity of 80% was used. HmtA expression was found to result in acute hypersensitivity for Cu(II) and Zn(II), which is a result of Cu(II)/Zn(II) uptake as the expression resulted in increased intracellular concentration of these metal ions (Lewinsohn, Lee & Rees, 2009). Uptake of other cations into the cytoplasm like toxic Ag(I) and Cd(II) ions did not occur (Lewinsohn, Lee & Rees, 2009). As hmtA expression depends on the extracellular Zn(II) concentration and Zn(II) is transported as well as Cu(II) by HmtA (Pederick et al., 2015), it can be assumed that HmtA is a zinc importer which also transports copper ions due to the similarity in size and charge of Zn(II) and Cu(II) ions.
Another transportation system is copCD from the copABCD operon for copper homeostasis in Pseudomonas syringae pv. tomato. This operon encodes for a precise regulation system of intracellular Cu(II) concentration and is a homolog to pcoABCD (Lawton et al., 2016). The two genes exist in various forms like in a copABCD operon, standing alone as a copCD operon or even build up CopCD fusion proteins (Lawton et al., 2016, Arnesano et al., 2002) and their function is not fully understood yet. One proposed function is the uptake of Cu(II) ions into the cytoplasm (Cha & Cooksey, 1993). CopC is a probable metallochaperone and exists in different forms with one or two copper binding sites (Lawton et al., 2016) and CopD is a inner membrane protein that is presumably able to pump Cu(II) into the cell. We identified both genes in the genome of Pseudomonas brassicacearum 3Re2-7 and transfered them into E. coli to increase the uptake of Cu(II) and accumulate intracellular copper.
Conclusion
Arnesano, F., Banci, L., Bertini, I., & Thompsett, A. R. (2002). Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. Structure, 10(10), 1337-1347.
Bagai, I., Rensing, C., Blackburn, N. J., & McEvoy, M. M. (2008). Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry, 47(44), 11408-11414. Cha, J. S., & Cooksey, D. A. (1993). Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Applied and environmental microbiology, 59(5), 1671-1674. Delmar, J. A., Su, C. C., & Edward, W. Y. (2013). Structural mechanisms of heavy-metal extrusion by the Cus efflux system. Biometals, 26(4), 593-607. Franke, S., Grass, G., Rensing, C., & Nies, D. H. (2003). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Journal of bacteriology, 185(13), 3804-3812. Gudipaty, S. A., Larsen, A. S., Rensing, C., & McEvoy, M. M. (2012). Regulation of Cu (I)/Ag (I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS microbiology letters, 330(1), 30-37. Ladomersky, E., & Petris, M. J. (2015). Copper tolerance and virulence in bacteria. Metallomics, 7(6), 957-964. Lawton, T. J., Kenney, G. E., Hurley, J. D., & Rosenzweig, A. C. (2016). The CopC family: structural and bioinformatic insights into a diverse group of periplasmic copper binding proteins. Biochemistry, 55(15), 2278-2290. Lewinson, O., Lee, A. T., & Rees, D. C. (2009). A P-type ATPase importer that discriminates between essential and toxic transition metals. Proceedings of the National Academy of Sciences, 106(12), 4677-4682. Munson, G. P., Lam, D. L., Outten, F. W., & O'Halloran, T. V. (2000). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. Journal of Bacteriology, 182(20), 5864-5871. Outten, F. W., Huffman, D. L., Hale, J. A., & O'Halloran, T. V. (2001). The independent cue and cusSystems confer copper tolerance during aerobic and anaerobic growth inEscherichia coli. Journal of Biological Chemistry, 276(33), 30670-30677. Pederick, V. G., Eijkelkamp, B. A., Begg, S. L., Ween, M. P., McAllister, L. J., Paton, J. C., & McDevitt, C. A. (2015). ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Scientific reports, 5, 13139. Postle, K., & Good, R. F. (1983). DNA sequence of the Escherichia coli tonB gene. Proceedings of the National Academy of Sciences, 80(17), 5235-5239. Quintana, J., Novoa-Aponte, L., & Argüello, J. M. (2017). Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. Journal of Biological Chemistry, jbc-M117. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS microbiology reviews, 27(2-3), 197-213. Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., ... & Tian, L. (2014). Copper active sites in biology. Chemical reviews, 114(7), 3659-3853. Tseng, T. T., Gratwick, K. S., Kollman, J., Park, D., Nies, D. H., Goffeau, A., & Saier Jr, M. H. (1999). The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. Journal of molecular microbiology and biotechnology, 1(1), 107-125. Xiao, M., Zhu, X., Fan, F., Xu, H., Tang, J., Qin, Y., ... & Zhang, X. (2017). Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur containing amino acids. Applied and environmental microbiology, AEM-03050. Yoneyama, H., & Nakae, T. (1996). Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. Microbiology, 142(8), 2137-2144.
Bagai, I., Rensing, C., Blackburn, N. J., & McEvoy, M. M. (2008). Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry, 47(44), 11408-11414. Cha, J. S., & Cooksey, D. A. (1993). Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Applied and environmental microbiology, 59(5), 1671-1674. Delmar, J. A., Su, C. C., & Edward, W. Y. (2013). Structural mechanisms of heavy-metal extrusion by the Cus efflux system. Biometals, 26(4), 593-607. Franke, S., Grass, G., Rensing, C., & Nies, D. H. (2003). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Journal of bacteriology, 185(13), 3804-3812. Gudipaty, S. A., Larsen, A. S., Rensing, C., & McEvoy, M. M. (2012). Regulation of Cu (I)/Ag (I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS microbiology letters, 330(1), 30-37. Ladomersky, E., & Petris, M. J. (2015). Copper tolerance and virulence in bacteria. Metallomics, 7(6), 957-964. Lawton, T. J., Kenney, G. E., Hurley, J. D., & Rosenzweig, A. C. (2016). The CopC family: structural and bioinformatic insights into a diverse group of periplasmic copper binding proteins. Biochemistry, 55(15), 2278-2290. Lewinson, O., Lee, A. T., & Rees, D. C. (2009). A P-type ATPase importer that discriminates between essential and toxic transition metals. Proceedings of the National Academy of Sciences, 106(12), 4677-4682. Munson, G. P., Lam, D. L., Outten, F. W., & O'Halloran, T. V. (2000). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. Journal of Bacteriology, 182(20), 5864-5871. Outten, F. W., Huffman, D. L., Hale, J. A., & O'Halloran, T. V. (2001). The independent cue and cusSystems confer copper tolerance during aerobic and anaerobic growth inEscherichia coli. Journal of Biological Chemistry, 276(33), 30670-30677. Pederick, V. G., Eijkelkamp, B. A., Begg, S. L., Ween, M. P., McAllister, L. J., Paton, J. C., & McDevitt, C. A. (2015). ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Scientific reports, 5, 13139. Postle, K., & Good, R. F. (1983). DNA sequence of the Escherichia coli tonB gene. Proceedings of the National Academy of Sciences, 80(17), 5235-5239. Quintana, J., Novoa-Aponte, L., & Argüello, J. M. (2017). Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. Journal of Biological Chemistry, jbc-M117. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS microbiology reviews, 27(2-3), 197-213. Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., ... & Tian, L. (2014). Copper active sites in biology. Chemical reviews, 114(7), 3659-3853. Tseng, T. T., Gratwick, K. S., Kollman, J., Park, D., Nies, D. H., Goffeau, A., & Saier Jr, M. H. (1999). The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. Journal of molecular microbiology and biotechnology, 1(1), 107-125. Xiao, M., Zhu, X., Fan, F., Xu, H., Tang, J., Qin, Y., ... & Zhang, X. (2017). Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur containing amino acids. Applied and environmental microbiology, AEM-03050. Yoneyama, H., & Nakae, T. (1996). Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. Microbiology, 142(8), 2137-2144.