Difference between revisions of "Team:Imperial College/Project"

Line 60: Line 60:
  
 
<div class="what">
 
<div class="what">
     <h3>What is Pixcell?</h3>
+
     <h3>PIXCELL</h3>
     <p2>As part of the international Genetically Engineered Machine (iGEM) competition in synthetic biology, we are developing PixCell, a foundational technology using an electrogenetic mechanism which links a bacterial response to an electrical stimuli. The system consists of genetically engineered bacteria encoding genetic networks that are activated or deactivated at specific voltages. We are developing hardware (an electrode array), software (in silico models and computational controller) and genetic networks (DNA circuits which produce fluorescence in response to electrical signals) to build a predictable, programmable system for spatial patterning of cells.</p2>
+
     <p2>Electrogenetics is a synthetic biology discipline developing electronic methods to control and measure gene expression. For PixCell we developed the first aerobic electrogenetic control system.</p2>
 +
    <p2>Using this system we demonstrated precise, programmable biological patterning using an affordable custom-built electrode array.</p2>
 +
    <p2>We further improved our system by building a library of electrogenetic parts compatible with a variety of assembly standards. This is the first electrogenetic toolkit and has been characterised for “plug-and-play” manipulation of the transcriptional response to electricity.</p2>
 +
    <p2>Robust models of the system were developed so that electrogenetic circuits can be tested in silico before they are in vivo.</p2>
 +
    <p2>Using this library we developed devices with important applications in the fields of biocontainment and manufacturing.</p2>
 +
 
 
</div>
 
</div>
  
Line 72: Line 77:
 
                  
 
                  
 
                 <h4 class="marginbottom">Biological Modules</h4>
 
                 <h4 class="marginbottom">Biological Modules</h4>
                 <p3>Tu ne quaesieris, scire nefas, quem mihi, quem tibi
+
                 <p3>The redox-stress sensing SoxR/pSoxS is repurposed so that oxidised redox mediators induces expression of a gene of choice.  
                        finem di dederint, Leuconoe, nec Babylonios
+
</p3>
                        temptaris numeros. Ut melius, quidquid erit, pati!
+
                        Seu pluris hiemes seu tribuit Iuppiter ultimam,
+
                        5quae nunc oppositis debilitat pumicibus mare
+
                        Tyrrhenum, sapias: vina liques et spatio brevi
+
                        spem longam reseces. Dum loquimur, fugerit invida
+
                        aetas: carpe diem, quam minimum credula postero.</p3>
+
 
                 </div>
 
                 </div>
 
          
 
          
Line 85: Line 84:
 
                
 
                
 
                 <h4 class="marginbottom">Electrochemical Modules</h4>
 
                 <h4 class="marginbottom">Electrochemical Modules</h4>
                 <p3>Vivamus mea Lesbia, atque amemus,
+
                 <p3>The voltages of electrodes in an array are controlled in order to locally oxidise or reduce redox mediator molecules in an agar gel.  
                        rumoresque senum seueriorum
+
</p3>
                        omnes unius aestimemus assis!
+
                        soles occidere et redire possunt:
+
                        nobis cum semel occidit breuis lux,
+
                        nox est perpetua una dormienda.
+
                        da mi basia mille, deinde centum,
+
                        dein mille altera, dein secunda centum,
+
                        deinde usque altera mille, deinde centum.
+
                        dein, cum milia multa fecerimus,
+
                        conturbabimus illa, ne sciamus,
+
                        aut ne quis malus inuidere possit,
+
                        cum tantum sciat esse basiorum.</p3>
+
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
Line 104: Line 92:
 
             <div class="integrate">
 
             <div class="integrate">
 
                     <h6>Pixcell</h6>
 
                     <h6>Pixcell</h6>
                     <p3>Tu ne quaesieris, scire nefas, quem mihi, quem tibi
+
                     <p3>Electronic Control of Biological Patterning</p3>
                        finem di dederint, Leuconoe, nec Babylonios
+
                        temptaris numeros. Ut melius, quidquid erit, pati!
+
                        Seu pluris hiemes seu tribuit Iuppiter ultimam,
+
                        5quae nunc oppositis debilitat pumicibus mare
+
                        Tyrrhenum, sapias: vina liques et spatio brevi
+
                        spem longam reseces. Dum loquimur, fugerit invida
+
                        aetas: carpe diem, quam minimum credula postero</p3>
+
 
                     </div>
 
                     </div>
 
                
 
                
Line 120: Line 101:
  
 
<div class="how">
 
<div class="how">
         <h3>Pixcell is The Future</h3>
+
         <h3>Electronic Control</h3>
         <p2> There are several alternative methods that allow spatio-temporal control of gene expression. The classic way is to use chemical inducers that bind control transcription factors (which affect expression of genes) which are orthogonal (taken from an organism other than the chassis being used to prevent interactions with the host&#8217;s genetic networks). Gene expression can also be achieved via physical signals, such as temperature, pressure and light. The field of optogenetics, which uses light to control gene expression, is a competitive alternative to the electrogenetic system we are developing due to its ease of computational control. (Important: the addition of new sets of tools for this purpose can open possibilities regards control that cannot be archived by only one methodology)</p2>
+
         <p2>Electronic control provides the programmable, spatiotemporal control of optogenetic inducer systems without the large genetic burdens and expensive experimental set-ups that chemical control provides. Furthermore it allows for easier integration of engineered organisms into existing industrial processes which use electronic control systems.
         <h3>BASIC</h3>
+
</p2>
         <p2>Not only the project itself, the methods we used are also novel.</p2>
+
         <h3>Patterning</h3>
 +
         <p2>Separation of labour between different cell populations allows for more complex biological processes to be engineered. Whilst Ecolibrium demonstrated a method of maintaining a stable multicellular co-culture, PixCell addresses a further necessary condition of complex multicellular life: patterning. Without patterning animals, plants and fungi would not be complex forms of life but a cellular soup. As such spatial control of gene expression is of key importance to the development of complex synthetic biology.  
 +
</p2>
 
</div>
 
</div>
  

Revision as of 21:52, 15 October 2018

Project Description



PIXCELL

Electrogenetics is a synthetic biology discipline developing electronic methods to control and measure gene expression. For PixCell we developed the first aerobic electrogenetic control system. Using this system we demonstrated precise, programmable biological patterning using an affordable custom-built electrode array. We further improved our system by building a library of electrogenetic parts compatible with a variety of assembly standards. This is the first electrogenetic toolkit and has been characterised for “plug-and-play” manipulation of the transcriptional response to electricity. Robust models of the system were developed so that electrogenetic circuits can be tested in silico before they are in vivo. Using this library we developed devices with important applications in the fields of biocontainment and manufacturing.

Biological Modules

The redox-stress sensing SoxR/pSoxS is repurposed so that oxidised redox mediators induces expression of a gene of choice.

Electrochemical Modules

The voltages of electrodes in an array are controlled in order to locally oxidise or reduce redox mediator molecules in an agar gel.
Pixcell
Electronic Control of Biological Patterning

Why is Pixcell useful?

Turning specific genes on and off is a fundamental step towards controlling biological systems. If we want to be able to engineer cells, tissues and perhaps entire organisms using a bottom-up approach (from the DNA components to the biological system) we need a way to control the spatio-temporal expression of genes. Our technology is a foundational advance in this field.

Electronic Control

Electronic control provides the programmable, spatiotemporal control of optogenetic inducer systems without the large genetic burdens and expensive experimental set-ups that chemical control provides. Furthermore it allows for easier integration of engineered organisms into existing industrial processes which use electronic control systems.

Patterning

Separation of labour between different cell populations allows for more complex biological processes to be engineered. Whilst Ecolibrium demonstrated a method of maintaining a stable multicellular co-culture, PixCell addresses a further necessary condition of complex multicellular life: patterning. Without patterning animals, plants and fungi would not be complex forms of life but a cellular soup. As such spatial control of gene expression is of key importance to the development of complex synthetic biology.

Manual Guide