Line 20: | Line 20: | ||
<p1>In order to identify potential issues and applications of our system, we engaged in direct dialogue with stakeholders, as per the <b><a href="https://2018.igem.org/Team:Imperial_College/scicomm">Communication Strategies Guide (CSG)</a></b>. This approach allowed us to devise potential applications for our system, as well as correct design flaws such as the use of toxic pyocyanin as a redox-cycling molecule. This led us to repurpose our system with a safer molecule (phenazine methosulfate -PMS-), which also resulted in being a cheaper inducer molecule even when compared with broadly used inducers. We also identified that internal friction in teams is a common issue as proven to us by our experience as well as a survey that we conducted amongst 67 iGEM members from 14 other teams. To address this issue we developed our <a href="https://2018.igem.org/Team:Imperial_College/ltat"><b>team communication app (LTAT)</b></a> to help improve team communication both internally and in other teams. </p1> | <p1>In order to identify potential issues and applications of our system, we engaged in direct dialogue with stakeholders, as per the <b><a href="https://2018.igem.org/Team:Imperial_College/scicomm">Communication Strategies Guide (CSG)</a></b>. This approach allowed us to devise potential applications for our system, as well as correct design flaws such as the use of toxic pyocyanin as a redox-cycling molecule. This led us to repurpose our system with a safer molecule (phenazine methosulfate -PMS-), which also resulted in being a cheaper inducer molecule even when compared with broadly used inducers. We also identified that internal friction in teams is a common issue as proven to us by our experience as well as a survey that we conducted amongst 67 iGEM members from 14 other teams. To address this issue we developed our <a href="https://2018.igem.org/Team:Imperial_College/ltat"><b>team communication app (LTAT)</b></a> to help improve team communication both internally and in other teams. </p1> | ||
</br> | </br> | ||
+ | <div id="safety"></div> | ||
<h3>Safety</h3> | <h3>Safety</h3> | ||
</br> | </br> |
Revision as of 03:29, 17 October 2018
Integrated HP
Summary of Integrated Human Practices
Safety
Toxicity comparison between Pyocyanin and PMS
The 2012 OSHA Hazard Communication Standard ranks hazard ratings with the use of categories, with Category 0 being the lowest risk and Category 4 being the highest. With regards to toxicity, pyocyanin is a Category 4 substance (Santa Cruz Biotechnology, 2010) and extreme care was taken during our wet lab to ensure our own safety and any contact with pyocyanin would warrant immediate medical attention, PMS on the other hand is a Category 0 substance (Santa Cruz Biotechnology, 2017) and thus is far easier and safer to handle.Cost comparison between PMS and common inducer molecules
A cursory look at the costs of PMS, pyocyanin and common inducer molecules (such as IPTG) already reveal stark differences in costs per gram. When accounting for working concentrations, this difference is further magnified, with PMS being 407 times cheaper than IPTG and 6600 times cheaper than pyocyanin. These costs are summarized in a table below, where costs per gram are obtained using the lowest price per gram on Sigma-Aldrich. However costs only matter if it can be shown that PMS can have a similar fold induction to common inducer molecules such as IPTG and experimental results for fold induction suggesting that is the case can be found below.Inducer | Working Concentrations | Price per gram (£) | Mass per liter of media (mg) | Price per liter of media (pence) | CAS No. | Relative price to PMS (%) |
---|---|---|---|---|---|---|
PMS | 0.2 uM | 15.76 | 0.0613 | 0.0966 | 299-11-6 | n/a |
Pyocyanin | 2.5 uM | 12,120 | 0.526 | 638 | 85-66-5 | 660,000 |
IPTG | 40 uM (https://www.neb.com/protocols/1/01/01/protein-expression-using-bl21de3-c2527) | 41.2 | 9.53 | 39.3 | 367-93-1 | 40,700 |
L-Arabinose | 6.66 M (https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-9-14) | 0.785 | 1000 | 78.5 | 5328-37-0 | 81,300 |
aTc | 0.214 uM (https://openwetware.org/wiki/ATc) | 1650 | 0.0991 | 16.4 | 13803-65-1 | 17,000 |