Difference between revisions of "Team:TAS Taipei"

(Undo revision 414272 by Charlotteachou (talk))
Line 1,148: Line 1,148:
 
display: hidden;
 
display: hidden;
 
}
 
}
βˆ’
       
+
 +
 
 +
 
 +
.main {
 +
  margin-top: 50px;
 +
  overflow-y: scroll;
 +
}
 +
 
 
</style>
 
</style>
 
</head>
 
</head>

Revision as of 12:52, 17 October 2018

TAS_Taipei

ABSTRACT

Turning red after consuming alcohol may seem like a mere social inconvenience. Yet, this flushing response is caused by an accumulation of acetaldehyde, a carcinogenic intermediate of alcohol metabolism. Acetaldehyde is broken down into harmless acetate by aldehyde dehydrogenase 2 (ALDH2). ALDH2 deficiency, the result of a point mutation in the ALDH2 gene, produces a much less efficient ALDH2 enzyme, leading to an accumulation of acetaldehyde and the subsequent flushing response. While about 8% of the global population is ALDH2 deficient, in our home, Taiwan, approximately 47% of the population carries this genetic mutation--the highest percentage in the world! Studies show that ALDH2 deficiency greatly increases the risk of developing esophageal and head and neck cancer. Thus, our project aims to produce recombinant ALDH2 to decrease levels of acetaldehyde in the upper digestive tract region. We envision delivery of ALDH2 as a purified protein or in consumer-friendly probiotics.

SAY NO πŸ™… TO GLOW πŸ’‘
Turning red πŸ… after consuming alcohol 🍷🍺 may seem like a mere social inconvenience 🀷. Yet, this flushing response 😑 is caused by an accumulation of acetaldehyde, a carcinogenic πŸ’€ intermediate of alcohol πŸ₯‚πŸ₯ƒ metabolism. Acetaldehyde is broken down πŸ“‰ into harmless acetate by aldehyde dehydrogenase 2 (ALDH2). ALDH2 deficiency, the result of a point πŸ‘‰ mutation in the ALDH2 gene, produces a much less efficient 🐒 ALDH2 enzyme, leading to an accumulation of acetaldehyde and the subsequent flushing response 😑. While about 8% of the global 🌍 population is ALDH2 deficient, in our home 🏑, Taiwan, approximately 47% of the population carries this genetic mutation--the highest percentage in the world πŸ€¦β€! Studies show that ALDH2 deficiency greatly increases πŸ“ˆ the risk of developing esophageal and head and neck cancer πŸš‘. Thus, our project πŸ‘¨β€πŸ”¬πŸ‘©β€πŸ”¬ aims to produce recombinant ALDH2 to decrease πŸ“‰ levels of acetaldehyde in the upper digestive tract region. We envision πŸ‘€ delivery 🍬🍦 of ALDH2 as a purified protein or in consumer-friendly probiotics.