Line 251: | Line 251: | ||
<article> | <article> | ||
− | Both probabilities are weighted with their prior probabilities, \(P^{eff}\) and \(P^{inf} = 1-P^{eff}\), where \(P^{eff}\) is set to 0.1 as mentioned previously. With all defined formulas (1),(2) and (3), the gene silencing probability \(P(eff|X)\) is calculated as follows: | + | Both probabilities are weighted with their prior probabilities, \(P^{eff}\) and \(P^{inf} = 1-P^{eff}\), where \(P^{eff}\) is set to 0.1 as mentioned previously. With all defined formulas (1), (2) and (3), the gene silencing probability \(P(eff|X)\) is calculated as follows: |
$$P(eff|X) = \frac{P^{eff} P(X|eff)}{P^{eff} P(X|eff)+P^{inf} P(X|inf)} \\\\= \frac{P^{eff} \prod_{i=1}^{19} q_{x_i^n}^{eff}}{P^{eff} \prod_{i=1}^{19} q_{x_i^n}^{eff}+P^{inf} \prod_{i=1}^{19} q_{x_i^n}^{inf}} $$ | $$P(eff|X) = \frac{P^{eff} P(X|eff)}{P^{eff} P(X|eff)+P^{inf} P(X|inf)} \\\\= \frac{P^{eff} \prod_{i=1}^{19} q_{x_i^n}^{eff}}{P^{eff} \prod_{i=1}^{19} q_{x_i^n}^{eff}+P^{inf} \prod_{i=1}^{19} q_{x_i^n}^{inf}} $$ | ||
Line 281: | Line 281: | ||
<a name="srnai" id="srnai" class="shifted-anchor"></a> | <a name="srnai" id="srnai" class="shifted-anchor"></a> | ||
− | <h2>siRNA | + | <h2>siRNA selection for RNAi and repression of translation</h2> |
<article> | <article> | ||
− | The procedures of siRNA | + | The procedures of siRNA selection for both mechanisms, RNAi and repression of translation, are very similar. Thus the first two modules, RNAi and siRNA, are similar. First the mRNA binding sequence is determined using the Rational design and the Ui-Tei rules. In the next step, the silencing probability is determined. At the end, the corresponding overhangs and scaffolds are added to the 19 nt long binding sequence to form the mature siRNA. |
</article> | </article> | ||
Line 290: | Line 290: | ||
<h2>Check siRNA</h2> | <h2>Check siRNA</h2> | ||
<article> | <article> | ||
− | Beside the | + | Beside the selection of siRNAs, we also implemented a functionality to check siRNAs derived by other methods. For a given target sequence and a corresponding siRNA it is checked whether the siRNA might bind to its target and how well it fulfills the described criteria. Furthermore, its silencing efficiency is calculated. |
</article> | </article> | ||
Line 297: | Line 297: | ||
<div class="article"> | <div class="article"> | ||
− | The command line application can be obtained directly <a href="https://static.igem.org/mediawiki/2018/9/9a/T--Bielefeld-CeBiTec--siRCon_1_1_all_versions.zip" style="padding-right:0;">here</a> or downloaded from our <a href="https://github.com/iGEMBielefeldCeBiTec/iGEM_Bielefeld_CeBiTec_2018/releases" style="padding-right:0;">GitHub repository.</a> | + | The command line application can be obtained directly <a href="https://static.igem.org/mediawiki/2018/9/9a/T--Bielefeld-CeBiTec--siRCon_1_1_all_versions.zip" style="padding-right:0;">here</a> or downloaded from our <a href="https://github.com/iGEMBielefeldCeBiTec/iGEM_Bielefeld_CeBiTec_2018/releases" style="padding-right:0;">GitHub repository.</a> To run the command line application, Python 2.7 needs to be installed. |
</div> | </div> | ||
Line 303: | Line 303: | ||
<img class="figure seventy" src="https://static.igem.org/mediawiki/2018/c/c5/T--Bielefeld-CeBiTec--help_commandline_vk.png" style="width:100%"> | <img class="figure seventy" src="https://static.igem.org/mediawiki/2018/c/c5/T--Bielefeld-CeBiTec--help_commandline_vk.png" style="width:100%"> | ||
<figcaption style="padding-top:10px;"> | <figcaption style="padding-top:10px;"> | ||
− | <b>Figure 4:</b> | + | <b>Figure 4:</b> Help message on how to use the command line application. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
<article> | <article> | ||
− | + | Used without input, a help message is displayed listing the mandatory and optional input parameters (Figure 4). For more information a README is available in our repository. | |
− | All resulting siRNAs are saved in one FASTA file. This simplifies the integration into different workflows. For example, it is possible to test the siRNAs on off-target bindings site using Blast. | + | All resulting siRNAs are saved in one FASTA file. This simplifies the integration into different workflows. For example, it is possible to test the siRNAs on off-target bindings site using Blast. An exemplary call of the application as well as the results returned can be seen in Figure 5. |
</article> | </article> | ||
Line 315: | Line 315: | ||
<img class="figure seventy" src="https://static.igem.org/mediawiki/2018/5/58/T--Bielefeld-CeBiTec--siRCon_ausgabe_vk.svg" style="width:100%"> | <img class="figure seventy" src="https://static.igem.org/mediawiki/2018/5/58/T--Bielefeld-CeBiTec--siRCon_ausgabe_vk.svg" style="width:100%"> | ||
<figcaption style="padding-top:10px;"> | <figcaption style="padding-top:10px;"> | ||
− | <b>Figure 5:</b> | + | <b>Figure 5:</b> Exemplary call and results of the command line application using a GFP gene sequence as input. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
Line 323: | Line 323: | ||
<div class="article"> | <div class="article"> | ||
− | + | Like the command line application, the graphical interface version can either be downloaded directly <a href="https://static.igem.org/mediawiki/2018/9/9a/T--Bielefeld-CeBiTec--siRCon_1_1_all_versions.zip" style="padding-right:0;">here</a>, or via our <a href="https://github.com/iGEMBielefeldCeBiTec/iGEM_Bielefeld_CeBiTec_2018/releases" style="padding-right:0; margin-right:0;">GitHub repository.</a> | |
− | In the graphical interface, the modules are | + | In the graphical interface, the modules are accessible via tabs (Figure 6). The last tab contains usage and copyright information. |
</div> | </div> | ||
Line 330: | Line 330: | ||
<img class="figure sixty" src="https://static.igem.org/mediawiki/2018/1/1f/T--Bielefeld-CeBiTec--tabs_siRCon_vk.png" style="width:100%"> | <img class="figure sixty" src="https://static.igem.org/mediawiki/2018/1/1f/T--Bielefeld-CeBiTec--tabs_siRCon_vk.png" style="width:100%"> | ||
<figcaption style="padding-top_10px;"> | <figcaption style="padding-top_10px;"> | ||
− | <b>Figure 6:</b> The different modules are | + | <b>Figure 6:</b> The different modules are accessible via tabs. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
− | <h2>1 | + | <h2>Workflow 1: siRNA for RNAi</h2> |
<ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | <ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | ||
Line 353: | Line 353: | ||
</figure> | </figure> | ||
− | < | + | <h3>2. siRNA for silencing</h3> |
<ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | <ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | ||
Line 420: | Line 420: | ||
<b>Takasaki, S. (2009).</b> Selecting effective siRNA target sequences by using Bayes’ theorem. Computational Biology and Chemistry 33: 368–372. <br> | <b>Takasaki, S. (2009).</b> Selecting effective siRNA target sequences by using Bayes’ theorem. Computational Biology and Chemistry 33: 368–372. <br> | ||
+ | |||
+ | <b>Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004).</b> Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32: 936-948. <br> | ||
Revision as of 02:01, 18 October 2018
siRCon - A siRNA Constructor
Short Summary
siRNAs short introduction
siRNA design
Choosing appropriate design methods
Rational siRNA design
Rule | Score |
---|---|
30%-52% G/C content | +1 |
At least 3 'W' ('A' or 'T') at positions 15-19 | +1 (for each 'A' or 'T') |
Absence of internal repeats (\(T_m \lt 20\)) | +1 |
An 'A' at position 3 | +1 |
An 'A' at position 19 | +1 |
A 'T' at position 19 | +1 |
An 'A' or 'T' at position 19 | -1 |
An 'A', 'C' or 'T' at position 13 | -1 |
Ui-Tei rule
- An ‘A’ or ‘T’ at position 19
- A ‘G’ or ‘C’ at position 1
- At least five ‘T’ or ‘A’ residues from positions 13 to 19
- No ‘GC’ stretch more than 9 nt long
Calculating silencing probability
siRNA selection for RNAi and repression of translation
Check siRNA
Command line application
The command line application can be obtained directly here or downloaded from our GitHub repository. To run the command line application, Python 2.7 needs to be installed.
Graphical Interface usage
Like the command line application, the graphical interface version can either be downloaded directly here, or via our GitHub repository.
In the graphical interface, the modules are accessible via tabs (Figure 6). The last tab contains usage and copyright information.
Workflow 1: siRNA for RNAi
- Insert gene sequence
- Choose Tace vector system (optionally)
- Constructions of siRNAs
- View resulting siRNAs (sense and antisense sequence) and their corresponding probability
- Decide if siRNAs should be saved with MicC scaffold (only if Tace is not used)
- Save results as FASTA file
2. siRNA for silencing
- Insert gene sequence
- Choose Tace vector system (optionally)
- Constructions of siRNAs
- View resulting siRNAs (sense and antisense sequence) and their corresponding probability
- Decide if siRNAs should be saved with MicC scaffold (only if Tace is not used)
- Decide if siRNAs should be saved with OmpA scaffold (only if Tace is not used)
- Save results as FASTA file
3. Check siRNA
- Insert gene sequence
- Insert siRNA sequences
- Choose method the siRNA was constructed for (siRNA for RNAi or siRNA for silencing)
- Choose if siRNA was constructed for Tace (optionally)
- Validation of entered siRNA for given target gene sequences
- View results
- Save results (optionally)
Outlook
Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.
Foley, P.L., Hsieh, P., Luciano, D.J., and Belasco, J.G. (2015). Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J. Biol. Chem. 290: 9478–9486.
Kibbe, W.A. (2007). OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35: W43–W46.
Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H., and Lee, S.Y. (2013). Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.
Naito, Y. and Ui-Tei, K. (2012). siRNA Design Software for a Target Gene-Specific RNA Interference. Front Genet 3.
Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., and Khvorova, A. (2004). Rational siRNA design for RNA interference. Nature Biotechnology 22: 326–330.
Siomi, H. and Siomi, M.C. (2009). On the road to reading the RNA-interference code. Nature 457: 396–404.
Takasaki, S. (2009). Selecting effective siRNA target sequences by using Bayes’ theorem. Computational Biology and Chemistry 33: 368–372.
Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004). Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32: 936-948.
Foley, P.L., Hsieh, P., Luciano, D.J., and Belasco, J.G. (2015). Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J. Biol. Chem. 290: 9478–9486.
Kibbe, W.A. (2007). OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35: W43–W46.
Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H., and Lee, S.Y. (2013). Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.
Naito, Y. and Ui-Tei, K. (2012). siRNA Design Software for a Target Gene-Specific RNA Interference. Front Genet 3.
Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., and Khvorova, A. (2004). Rational siRNA design for RNA interference. Nature Biotechnology 22: 326–330.
Siomi, H. and Siomi, M.C. (2009). On the road to reading the RNA-interference code. Nature 457: 396–404.
Takasaki, S. (2009). Selecting effective siRNA target sequences by using Bayes’ theorem. Computational Biology and Chemistry 33: 368–372.
Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004). Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32: 936-948.