Difference between revisions of "Team:Bielefeld-CeBiTec/Demonstrate"

Line 73: Line 73:
  
  
 +
<div
 
<h2 id="Achievements" style="color:white; font-size:30px; margin-top:5%;">Achievements</h2>
 
<h2 id="Achievements" style="color:white; font-size:30px; margin-top:5%;">Achievements</h2>
  
Line 78: Line 79:
 
<div class="row">
 
<div class="row">
 
   <div class="column_One">
 
   <div class="column_One">
     <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Improve"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/e/e8/T--Bielefeld-CeBiTec--checkbox_start_vk.svg" class="image"></a>
+
     <a href="https://2018.igem.org/Team:Bielefeld-CeBiTec/Improve"><img style="width:100%" src="https://static.igem.org/mediawiki/2018/d/de/T--Bielefeld-CeBiTec--checkbox_demonstrate_jr.svg" class="image"></a>
 
   </div>
 
   </div>
 
   <div class="column_Two">
 
   <div class="column_Two">

Revision as of 02:04, 18 October 2018

Demonstrate
This is nanoFactory - a combined system to clean up mining drainage and produce nanoparticles.
During our project we were able to demonstrate accumulation of metal ions in Escherichia coli, while increasing the tolerance towards such ions. We engineered ferritin to enable iron, silver and gold nanoparticle formation. Furthermore, we demonstarted that nanoparticles could be used to print conductive paths.

BRahman, K., Khan, A., Muhammad, N. M., Jo, J., & Choi, K. H. (2012). Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing. Journal of Micromechanics and Microengineering, 22(6), 065012.
Liu, Y., Pharr, M., & Salvatore, G. A. (2017). Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS nano, 11(10), 9614-9635.
Park, B. K., Kim, D., Jeong, S., Moon, J., & Kim, J. S. (2007). Direct writing of copper conductive patterns by ink-jet printing. Thin solid films, 515(19), 7706-7711.
Raut, N. C., & Al-Shamery, K. (2018). Inkjet printing metals on flexible materials for plastic and paper electronics. Journal of Materials Chemistry C, 6(7), 1618-1641.
Rothschild, L. J., Koehne, J., Gandhiraman, R., Navarrete, J., & Spangle, D. (2017). Urban biomining meets printable electronics: end-to-end at destination biological recycling and reprinting.
Lim, S., Joyce, M., Fleming, P. D., Aijazi, A. T., & Atashbar, M. (2013). Inkjet printing and sintering of nano-copper ink. Journal of Imaging Science and Technology, 57(5), 50506-1.
Joo, S. J., Park, S. H., Moon, C. J., & Kim, H. S. (2015). A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS applied materials & interfaces, 7(10), 5674-5684.
Jeong, S., Song, H. C., Lee, W. W., Lee, S. S., Choi, Y., Son, W., ... & Ryu, B. H. (2011). Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate. Langmuir, 27(6), 3144-3149.
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., & Manuspiya, H. (2012). Synthesis of colloidal silver nanoparticles for printed electronics. Comptes Rendus Chimie, 15(6), 539-544.
Karthik, P. S., & Singh, S. P. (2015). Copper conductive inks: synthesis and utilization in flexible electronics. RSC Advances, 5(79), 63985-64030.
Kawahara, Y., Hodges, S., Cook, B. S., Zhang, C., & Abowd, G. D. (2013, September). Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing (pp. 363-372). ACM.