Line 118: | Line 118: | ||
<figure role="group"> | <figure role="group"> | ||
− | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/ | + | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/4/46/T--Bielefeld-CeBiTec--RNAi_scaffolds_new2.png"> |
<figcaption> | <figcaption> | ||
<b>Figure 1:</b> Effects of siRNA design on RNAi effectiveness and siRNA stability. <b>A</b> If the siRNA does not carry suitable 5' or 3' extensions, it is quickly degraded. <b>B</b> siRNAs extended by the tetranucleotide AGNN are recognized and processed by the pyrophosphohydrolase RppH. This enzyme converts the 5' triphosphate to a monophosphate which greatly reduces siRNA degradation. This allows the siRNA to hybridize to its target mRNA which in turn is degraded by RNAse E, thus leading to effective mRNA silencing. <b>C</b> Extending siRNAs with a 3' MicC scaffold in addition to the 5' tetranucleotide AGNN further enhances mRNA silencing. MicC facilitates the hybridization of siRNA and target mRNA and protects the siRNA from degradation. | <b>Figure 1:</b> Effects of siRNA design on RNAi effectiveness and siRNA stability. <b>A</b> If the siRNA does not carry suitable 5' or 3' extensions, it is quickly degraded. <b>B</b> siRNAs extended by the tetranucleotide AGNN are recognized and processed by the pyrophosphohydrolase RppH. This enzyme converts the 5' triphosphate to a monophosphate which greatly reduces siRNA degradation. This allows the siRNA to hybridize to its target mRNA which in turn is degraded by RNAse E, thus leading to effective mRNA silencing. <b>C</b> Extending siRNAs with a 3' MicC scaffold in addition to the 5' tetranucleotide AGNN further enhances mRNA silencing. MicC facilitates the hybridization of siRNA and target mRNA and protects the siRNA from degradation. | ||
Line 132: | Line 132: | ||
<figure role="group"> | <figure role="group"> | ||
− | <img class="figure sixty" src="https://static.igem.org/mediawiki/2018/ | + | <img class="figure sixty" src="https://static.igem.org/mediawiki/2018/4/4c/T--Bielefeld-CeBiTec--siRNA_scaffolds_new_vk_2.png"> |
<figcaption> | <figcaption> | ||
<b>Figure 2:</b> siRNA design for silencing translation. <b>A</b> If the siRNA does not carry suitable 5' or 3' extensions, it is quickly degraded. <b>B</b> siRNAs supplemented with the outer membrane protein A (OmpA) scaffold are more stable and effectively silence the translation of target mRNAs. <b>C</b> If the siRNA is supplemented with the OmpA as well as the MicC scaffold the repression is enhanced further. </figcaption> | <b>Figure 2:</b> siRNA design for silencing translation. <b>A</b> If the siRNA does not carry suitable 5' or 3' extensions, it is quickly degraded. <b>B</b> siRNAs supplemented with the outer membrane protein A (OmpA) scaffold are more stable and effectively silence the translation of target mRNAs. <b>C</b> If the siRNA is supplemented with the OmpA as well as the MicC scaffold the repression is enhanced further. </figcaption> | ||
Line 335: | Line 335: | ||
− | < | + | <h3>Tab 1: siRNA for RNAi</h3> |
<ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | <ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | ||
Line 353: | Line 353: | ||
</figure> | </figure> | ||
− | <h3>2 | + | <h3>Tab 2: siRNA for silencing</h3> |
<ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | <ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | ||
Line 372: | Line 372: | ||
</figure> | </figure> | ||
− | <h2>3 | + | <h2>Tab 3: Check siRNA</h2> |
<ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | <ol style="font-size:16px; line-height:1.5em; padding-left:5%; padding-bottom:10px;"> | ||
Line 396: | Line 396: | ||
<article> | <article> | ||
− | To help future iGEM teams to control gene expression, we developed siRCon, a bioinformatic application | + | To help future iGEM teams to control gene expression, we developed siRCon, a bioinformatic application to generate high-fidelity siRNA sequences in prokaryotic organisms. We introduce this method as an alternative to CRISPR/Cas, since it is open source and free of charge. |
In the future, further improvements and extensions of this applications are intended. On the one side, eukaryotic siRNAs will also be constructed. This is how we want to provide a universal tool for siRNAs. On the other side, we want to improve the already existing features, especially the check siRNA functionality. | In the future, further improvements and extensions of this applications are intended. On the one side, eukaryotic siRNAs will also be constructed. This is how we want to provide a universal tool for siRNAs. On the other side, we want to improve the already existing features, especially the check siRNA functionality. | ||
</article> | </article> |
Revision as of 02:15, 18 October 2018
siRCon - A siRNA Constructor
Short Summary
siRNAs short introduction
siRNA design
Choosing appropriate design methods
Rational siRNA design
Rule | Score |
---|---|
30%-52% G/C content | +1 |
At least 3 'W' ('A' or 'T') at positions 15-19 | +1 (for each 'A' or 'T') |
Absence of internal repeats (\(T_m \lt 20\)) | +1 |
An 'A' at position 3 | +1 |
An 'A' at position 19 | +1 |
A 'T' at position 19 | +1 |
An 'A' or 'T' at position 19 | -1 |
An 'A', 'C' or 'T' at position 13 | -1 |
Ui-Tei rule
- An ‘A’ or ‘T’ at position 19
- A ‘G’ or ‘C’ at position 1
- At least five ‘T’ or ‘A’ residues from positions 13 to 19
- No ‘GC’ stretch more than 9 nt long
Calculating silencing probability
siRNA selection for RNAi and repression of translation
Check siRNA
Command line application
The command line application can be obtained directly here or downloaded from our GitHub repository. To run the command line application, Python 2.7 needs to be installed.
Graphical Interface usage
Like the command line application, the graphical interface version can either be downloaded directly here, or via our GitHub repository.
In the graphical interface, the modules are accessible via tabs (Figure 6). The last tab contains usage and copyright information.
Tab 1: siRNA for RNAi
- Insert gene sequence
- Choose Tace vector system (optionally)
- Constructions of siRNAs
- View resulting siRNAs (sense and antisense sequence) and their corresponding probability
- Decide if siRNAs should be saved with MicC scaffold (only if Tace is not used)
- Save results as FASTA file
Tab 2: siRNA for silencing
- Insert gene sequence
- Choose Tace vector system (optionally)
- Constructions of siRNAs
- View resulting siRNAs (sense and antisense sequence) and their corresponding probability
- Decide if siRNAs should be saved with MicC scaffold (only if Tace is not used)
- Decide if siRNAs should be saved with OmpA scaffold (only if Tace is not used)
- Save results as FASTA file
Tab 3: Check siRNA
- Insert gene sequence
- Insert siRNA sequences
- Choose method the siRNA was constructed for (siRNA for RNAi or siRNA for silencing)
- Choose if siRNA was constructed for Tace (optionally)
- Validation of entered siRNA for given target gene sequences
- View results
- Save results (optionally)
Outlook
Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.
Foley, P.L., Hsieh, P., Luciano, D.J., and Belasco, J.G. (2015). Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J. Biol. Chem. 290: 9478–9486.
Kibbe, W.A. (2007). OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35: W43–W46.
Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H., and Lee, S.Y. (2013). Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.
Naito, Y. and Ui-Tei, K. (2012). siRNA Design Software for a Target Gene-Specific RNA Interference. Front Genet 3.
Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., and Khvorova, A. (2004). Rational siRNA design for RNA interference. Nature Biotechnology 22: 326–330.
Siomi, H. and Siomi, M.C. (2009). On the road to reading the RNA-interference code. Nature 457: 396–404.
Takasaki, S. (2009). Selecting effective siRNA target sequences by using Bayes’ theorem. Computational Biology and Chemistry 33: 368–372.
Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004). Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32: 936-948.
Foley, P.L., Hsieh, P., Luciano, D.J., and Belasco, J.G. (2015). Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J. Biol. Chem. 290: 9478–9486.
Kibbe, W.A. (2007). OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35: W43–W46.
Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H., and Lee, S.Y. (2013). Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.
Naito, Y. and Ui-Tei, K. (2012). siRNA Design Software for a Target Gene-Specific RNA Interference. Front Genet 3.
Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., and Khvorova, A. (2004). Rational siRNA design for RNA interference. Nature Biotechnology 22: 326–330.
Siomi, H. and Siomi, M.C. (2009). On the road to reading the RNA-interference code. Nature 457: 396–404.
Takasaki, S. (2009). Selecting effective siRNA target sequences by using Bayes’ theorem. Computational Biology and Chemistry 33: 368–372.
Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004). Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32: 936-948.