Line 160: | Line 160: | ||
<article> | <article> | ||
− | The purified HUHF was used to produce gold and silver nanoparticles. Therefore, HUHF samples were prepared by removing the ferritin bound Fe<sup>3+</sup> ions. By applying the | + | The purified HUHF was used to produce gold and silver nanoparticles. Therefore, HUHF samples were prepared by removing the ferritin bound Fe<sup>3+</sup> ions. By applying the iron removement protocol, the Fe<sup>3+</sup> ions have been reduced to Fe<sup>2+</sup> ions. After the iron ions were removed, AuHCl<sub>4</sub> and AgNO<sub>3</sub> solutions were added as stated in the (name of the protocol) protocols. The HUHF with the AuHCl<sub>4</sub> solution was incubated for 1.5 hours whereas the AgNO<sub>3</sub> solution was incubated for 18 hours while being illuminated by a 60 watts lamp. Afterwards the samples were centrifuged (10.000 g, 10 min) and further purified with a 100 kDa protein columns to remove denaturated HUHF. |
For demonstration of nanoparticle formation and determination of nanoparticle composition the samples were examined using a transmission electron microscope (TEM). | For demonstration of nanoparticle formation and determination of nanoparticle composition the samples were examined using a transmission electron microscope (TEM). | ||
Line 206: | Line 206: | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/8/87/T--Bielefeld-CeBiTec--jr--G1CAL_13and10nm.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/8/87/T--Bielefeld-CeBiTec--jr--G1CAL_13and10nm.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure 10:</b> Automatic identification of | + | <b>Figure 10:</b> Automatic identification of two gold nanoparticles (13 and 10 nm) in the wildtype human ferritin sample <a href="http://parts.igem.org/Part:BBa_K1189019">(BBa_K1189019)</a>. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
Line 217: | Line 217: | ||
<img class="figure hundred" src="https://static.igem.org/mediawiki/2018/6/68/T--Bielefeld-CeBiTec--jr--G1Bi_7and9nm.png"> | <img class="figure hundred" src="https://static.igem.org/mediawiki/2018/6/68/T--Bielefeld-CeBiTec--jr--G1Bi_7and9nm.png"> | ||
<figcaption> | <figcaption> | ||
− | <b>Figure 11:</b> Automatic identification of | + | <b>Figure 11:</b> Automatic identification of two gold nanoparticles (7 and 9 nm) in the gold silver mutant ferritin sample <a href="http://parts.igem.org/Part:BBa_K2638999">(BBa_K2638999)</a>. These nanoparticles are approximately 30 % smaller than the nanoparticles produced by the wildtype ferritin. |
</figcaption> | </figcaption> | ||
</figure> | </figure> | ||
Line 231: | Line 231: | ||
<article> | <article> | ||
− | We could show that commercially available metal nanoparticles can be printed and melted to produce electronic circuits using temperatures as low as 350°C compared to the very high melting temperature of | + | We could show that commercially available metal nanoparticles can be printed and melted to produce electronic circuits using temperatures as low as 350°C compared to the very high melting temperature of 1083 °C required to melt bulk copper. To use the NP we produced ourself for the printing of conductive circuits would have required higher amounts of the synthesized nanoparticles and would also have required further purification steps. Through our talks to Benjamin Lehner working at NASA we knew already that proteins mixed with the nanoparticles would lead to no or very poor conductivity when trying to sinter them without further purification. Using our own nanoparticles would be the logical next step. |
</article> | </article> | ||
Revision as of 17:07, 7 December 2018
Improve a Part
Short summary
The Human Ferritin Heavy Chain (HUHF) BBa_K2638999 was successfully cloned and expressed in Escherichia coli DH5 alpha. After protein purification HUHF was used to produce gold and silver nanoparticles which was ensured by examinations with the Transmission Electron Microscope and Energy-dispersive X-ray spectroscopy (EDX). Thus, we improved BBa_K1189019 which is not able to form gold and silver nanoparticles.
The Calgary 2013 iGEM team used the human ferritin wildtype (BBa_K1189019) as reporter protein for a test strip. They expressed the human ferritin heavy and light chain heterologous using Escherichia coli. In the cells, the ferritin produced its characteristic iron core, which was colored with the help of fenton chemistry to produce the prussian blue iron complex. Beside the function as reporter, the team mentioned the capability of ferritin to produce nanoparticles from other metal ions.
Improved Human Ferritin: BBa_K2638999
Figure 7 shows a TEM image with 147 identified silver nanoparticles produced by the wild type human ferritin (BBa_K1189019). The particles are between 24.5 and 1597.8 nm in size with one very big particle with a size of 7272.3 nm, which seems to consist in many agglutinated silver nanoparticles. No particle was found in the expected size of about 8 nm.
Figure 8 shows a TEM image with 708 identified silver nanoparticles produced by the gold silver mutant ferritin sample (BBa_K2638999). The particles have a size between 1.8 and 34.8 nm. 120 of the silver nanoparticles (16.9 %) are exactly in the expected size of 7 to 9 nm which indicates that at least all of these particles are produced by our improved ferritin (BBa_K2638999).
The direct comparison of our new gold silver mutant ferritin (BBa_K2638999) and the old wild type human ferritin (BBa_K1189019) in figure 9 shows that our improved enzyme produces nearly five times more silver nanoparticles which are 98.5 % smaller than the silver nanoparticles produced by the wild type ferritin. This proves that the new ferritin enzyme is much more suitable for producing silver nanoparticles than the wild type version.
Figure 10 shows two gold nanoparticles of 13 and 10 nm diameter that were produced by the wild type human ferritin sample (BBa_K1189019). They are slightly bigger than the expected size between 7 and 9 nm, and thus it can’t be ensured that these particles are really produced by that enzyme.
Figure 11 shows two gold nanoparticles of 7 and 9 nm diameter that were produced by the gold silver mutant ferritin (BBa_K2638999). They are exactly in the expected size range, although it is difficult to draw reliable conclusions from this small size and number of particles.
Outlook
Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.
Butts, C.A., Swift, J., Kang, S., Di Costanzo, L., Christianson, D.W., Saven, J.G., and Dmochowski, I.J. (2008).. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein † , ‡. Biochemistry 47: 12729–12739.
Castro, L., Blázquez, M.L., Muñoz, J., González, F., and Ballester, A. (2014).. Mechanism and Applications of Metal Nanoparticles Prepared by Bio-Mediated Process. Rev. Adv. Sci. Eng. 3.
Ensign, D., Young, M., and Douglas, T. (2004).. Photocatalytic synthesis of copper colloids from CuII by the ferrihydrite core of ferritin. Inorg. Chem. 43: 3441–3446.
Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., and Lopez, R. (2010).. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: W695-699.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004).UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., and Manuspiya, H. (2012). . DSynthesis of colloidal silver nanoparticles for printed electronics. /data/revues/16310748/v15i6/S1631074812000549/.
Wang, L., Hu, C., and Shao, L. (2017a).. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine 12: 1227–1249.
Wang, Z., Gao, H., Zhang, Y., Liu, G., Niu, G., and Chen, X. (2017b).. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11: 633–646.