Team:Imperial College/Project

Project Description



PixCell

Electrogenetics is a synthetic biology discipline developing electronic methods to control and measure gene expression. For PixCell we developed the first aerobic electrogenetic control system. Using this system we demonstrated precise, programmable biological patterning using an affordable custom-built electrode array. We further improved our system by building a library of electrogenetic parts compatible with a variety of assembly standards. This is the first electrogenetic toolkit and has been characterised for “plug-and-play” manipulation of the transcriptional response to electricity. Robust models of the system were developed so that electrogenetic circuits can be tested in silico before they are in vivo. Using this library we developed devices with important applications in the fields of biocontainment and manufacturing.

Mechanism

Biological Module

The redox-stress sensing SoxR/pSoxS is repurposed so that oxidised redox mediators induces expression of a gene of choice.

Electrochemical Module

The voltages of electrodes in an array are controlled in order to locally oxidise or reduce redox mediator molecules in an agar gel.
Pixcell
Electronic Control of Biological Patterning

Electronic Control

Electronic control provides the programmable, spatiotemporal control of optogenetic inducer systems without the large genetic burdens and expensive experimental set-ups that chemical control provides. Furthermore it allows for easier integration of engineered organisms into existing industrial processes which use electronic control systems.

Patterning

Separation of labour between different cell populations allows for more complex biological processes to be engineered. Whilst Ecolibrium demonstrated a method of maintaining a stable multicellular co-culture, PixCell addresses a further necessary condition of complex multicellular life: patterning. Without patterning animals, plants and fungi would not be complex forms of life but a cellular soup. As such spatial control of gene expression is of key importance to the development of complex synthetic biology.