Team:Imperial College/Achievements

Achievements

Dry lab

- Developed an electrochemical model which simulates oxidised or reduced species being formed at and diffusing away from an electrode surface

- Developed a biological model which simulates the genetic response to the concentration of oxidised and reduced species on a single cell level

- Developed an integrated model and fitted it to experimental data to estimate absolute parameters of the electrogenetic system

- Designed and constructed an affordable electrode array to facilitate programmable spatial using the electrogenetic device.

- Developed a user-friendly phone application for remote control of patterning using the electrode array.

Wet lab

- Generated the first aerobic electrogenetic device in E. coli

- Optimised chemical conditions of the system to maximise the biological response of the electrogenetic device without significantly impacting cell viability.

- Proved this electrogenetic can provide fine spatial control of gene expression using a cheap electrode set-up.

- Created a library of electrogenetic parts for use in future electrogenetic project.

- Assembled the electrogenetic library into X different constructs using the next-generation BASIC assembly method, which were then characterised.

- Proved applications of electrogenetic devices in biocontainment and biomanifacturing.

- Found evidence of a new phenazine molecule as an inducer, which was suggested to exist in prior literature.

Human practices and outreach

- Proved molecules in the system could be replaced with safer alternatives following experts’ concerns of the toxicity of the system.

- Designed a Communinication Strategy Guide (CSG) to direct communication of our project with stakeholders

- Desined an interactive app (LTAT) to foster communication of problems within a team

Collaborations

- Collaborated with X different teams from X different countries.

- Proved the part library can be used for alternative devices to electrogenetic systems with Oxford University.

- Ensured comparability of the part library with multiple assembly methods with Oxford University



BRONZE

criteria for bronze medal

SILVER

criteria for silver medal

GOLD

criteria for gold medal