Team:SHSBNU China/Parts

Parts

Parts

I. Overview

We have finished constructing all the parts(BBa_K2684000- BBa_K2684006) which have all been sequenced and submitted to the iGEM parts registry

Name Description Function
BBa_K52684000 CotA laccase of B. subtilis CotA of B. subtilis is a copper-dependet laccase, which can catalyze the oxidation of board range of synthetic dyes.
BBa_K52684001 PelB-CotA PelB signal peptide linking with CotA to transfer CotA out of the bacteria.
BBa_K52684002 PhoA-CotA PhoA signal peptide linking with CotA to transfer CotA out of the bacteria.
BBa_K52684003 OmpA-CotA OmpA signal peptide linking with CotA to transfer CotA out of the bacteria.
BBa_K52684004 SpyCatcher-sfGFP SfGFP fused to the SpyCatcher domain can be covalently attached onto the biofilm displaying SpyTag.This part is used to test our immobilization strategy of CotA.
BBa_K52684005 SpyCatcher-CotA CotA fused to the SpyCatcher domain can be covalently attached onto the biofilm displaying SpyTag.
BBa_K52684006 CsgA-SpyTag CsgA is a major subunit of the biofilm of E. coli(1)(2). A SpyTag is fused to CsgA so that CotA laccase can be fixed on biofilm through SpyTag-SpyCatcher chemistry.

Favorite Part

The favorite part of pur team is BBa_K2684006. We improved it from previous part BBa_K1583000. CsaA is the main component to form biofilm, and by adding SpyTag which was fused onto the csgA sequence, we could fix the CotA laccase with SpyCatcher. Covalent bond would be formed between SpyTag and SpyCatcher.

a. Improve Previous Parts

We improved part BBa_K1583000 by adding a sequence of SpyTag in order to fix CotA laccase onto the biofilm, making BBa_K2684006.

We improved part BBa_K1336002 by eliminating its EcoRI cutting site, making BBa_K2684000.

II. References

(1). Wang, X, et al. “Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control.” Advanced Materials (Deerfield Beach, Fla.)., U.S. National Library of Medicine, Apr. 2018, www.ncbi.nlm.nih.gov/pubmed/29516606.

(2). Chen, Allen Y., et al. “Synthesis and Patterning of Tunable Multiscale Materials with Engineered Cells .” Nature Materials, U.S. National Library of Medicine, May 2014, www.ncbi.nlm.nih.gov/pmc/articles/PMC4063449/.