Difference between revisions of "Team:Newcastle/Collaborations"

Line 77: Line 77:
  
 
                     <p><font size="3"><br><br>Perchlorate salts are found in the Martian regolith covering the surface of Mars at a concentration of up to 1%. Perchlorate is a highly oxidising compound used in rocket fuels and munitions. It is dangerous and toxic to humans. Current disposal methods are via expensive bioreactors, or contained explosions. So, if humans are to colonise Mars, we will have to remove the perchlorates from the soil in order to have a chance of developing agriculture for our survival. Exeter University 2018 iGEM Team are developing a bioreactor that will remove perchlorate salts from soil, and dispose of waste perchlorate in a cheap, safe manner, by using genetically engineered bacteria with (per)chlorate and chlorite reducing enzymes.</font></p>
 
                     <p><font size="3"><br><br>Perchlorate salts are found in the Martian regolith covering the surface of Mars at a concentration of up to 1%. Perchlorate is a highly oxidising compound used in rocket fuels and munitions. It is dangerous and toxic to humans. Current disposal methods are via expensive bioreactors, or contained explosions. So, if humans are to colonise Mars, we will have to remove the perchlorates from the soil in order to have a chance of developing agriculture for our survival. Exeter University 2018 iGEM Team are developing a bioreactor that will remove perchlorate salts from soil, and dispose of waste perchlorate in a cheap, safe manner, by using genetically engineered bacteria with (per)chlorate and chlorite reducing enzymes.</font></p>
<p><font size="3">To assist their project, we have recorded the affects of perchlorate on the growth of our free-living nitrogen fixing, soil bacteria. This has helped show the importance of their project in aiding the development of agricultural methods on Mars, as well as disposing of perchlorate in a safe, contained way so as not to harm the environment and affect soil ecosystems. Our results can be found <a href="https://static.igem.org/mediawiki/2018/e/e9/T--Exeter--Newcastle_graphs.pdf" >here</a>
+
<p><font size="3">To assist their project, we have recorded the affects of perchlorate on the growth of our free-living nitrogen fixing, soil bacteria. This has helped show the importance of their project in aiding the development of agricultural methods on Mars, as well as disposing of perchlorate in a safe, contained way so as not to harm the environment and affect soil ecosystems. Our results can be found <a href="https://static.igem.org/mediawiki/2018/e/e9/T--Exeter--Newcastle_graphs.pdf" >here</a>. <br><a href="https://2018.igem.org/Team:Exeter/Collaborations" >Exeter University Collaborations Page</a>
 
</font></p>
 
</font></p>
  
Line 110: Line 110:
 
                     <p><font size="3"><br><br>One of our team members has a friend at Sorbonne, who kindly put us in contact with their iGEM team. As they knew we have architecture students in the team they asked us to produce a visual for their human practices.  
 
                     <p><font size="3"><br><br>One of our team members has a friend at Sorbonne, who kindly put us in contact with their iGEM team. As they knew we have architecture students in the team they asked us to produce a visual for their human practices.  
  
They sent us over an initial sketch, once this was received we used our imaginations and attempted to visualise this part of their project for them. The image shows a semi-permeable membrane which would contain their genetically modified bacteria, anchored to the sea bed - but not so deep that they wouldn’t receive any light. This would prevent their bacteria from being released into the environment.  
+
They sent us over an initial sketch, once this was received we used our imaginations and attempted to visualise this part of their project for them. The image shows a semi-permeable membrane which would contain their genetically modified bacteria, anchored to the sea bed - but not so deep that they wouldn’t receive any light. This would prevent their bacteria from being released into the environment. <br>
 +
<br><a href="https://2018.igem.org/Team:Sorbonne_U_Paris/Collaborations" >Sorbonne University Collaborations Page</a>
 
  </font></p>
 
  </font></p>
  
Line 145: Line 146:
  
  
                     <p><font size="3"><br><br>To aid Warwick in their project we collected a series of water samples from bodies of water in areas surrounding Newcastle.</font></p>
+
                     <p><font size="3"><br><br>To aid Warwick in their project we collected a series of water samples from bodies of water in areas surrounding Newcastle.
 +
<br><a href="https://2018.igem.org/Team:Warwick/Collaborations">Warwick University Collaborations Page</a></font></p>
  
  

Revision as of 11:15, 12 October 2018

Menu
Alternative Roots/Protocols

COLLABORATIONS

Exeter University



Perchlorate salts are found in the Martian regolith covering the surface of Mars at a concentration of up to 1%. Perchlorate is a highly oxidising compound used in rocket fuels and munitions. It is dangerous and toxic to humans. Current disposal methods are via expensive bioreactors, or contained explosions. So, if humans are to colonise Mars, we will have to remove the perchlorates from the soil in order to have a chance of developing agriculture for our survival. Exeter University 2018 iGEM Team are developing a bioreactor that will remove perchlorate salts from soil, and dispose of waste perchlorate in a cheap, safe manner, by using genetically engineered bacteria with (per)chlorate and chlorite reducing enzymes.

To assist their project, we have recorded the affects of perchlorate on the growth of our free-living nitrogen fixing, soil bacteria. This has helped show the importance of their project in aiding the development of agricultural methods on Mars, as well as disposing of perchlorate in a safe, contained way so as not to harm the environment and affect soil ecosystems. Our results can be found here.
Exeter University Collaborations Page

COLLABORATIONS

Sorbonne Université Paris



One of our team members has a friend at Sorbonne, who kindly put us in contact with their iGEM team. As they knew we have architecture students in the team they asked us to produce a visual for their human practices. They sent us over an initial sketch, once this was received we used our imaginations and attempted to visualise this part of their project for them. The image shows a semi-permeable membrane which would contain their genetically modified bacteria, anchored to the sea bed - but not so deep that they wouldn’t receive any light. This would prevent their bacteria from being released into the environment.

Sorbonne University Collaborations Page

COLLABORATIONS

Warwick University




To aid Warwick in their project we collected a series of water samples from bodies of water in areas surrounding Newcastle.
Warwick University Collaborations Page