Line 390: | Line 390: | ||
<div class="w3-blue-gray"> | <div class="w3-blue-gray"> | ||
<br /><br /> | <br /><br /> | ||
+ | <h1 class="w3-center" style="color:white;"> Model </h1> | ||
+ | |||
+ | <br /> | ||
+ | <br /> | ||
+ | <br /> | ||
+ | |||
+ | <div class="content"> | ||
+ | <p style="padding-left:150px;padding-right:150px;text-align:justify;line-height:1.5;color:white;"> | ||
+ | We present to you the exploratory model of our enzymatic pathway which served as the foundation of our project design and guided our lab work. We completed in depth research on enzymes families relevant to TCDD degradation, narrowing down contenders to the enzymes we would eventually use in the lab. Utilizing both biochemical analysis of reactions needed to degrade dioxins, and basing our research on prior academic studies, we compiled a comprehensive list of enzymes. | ||
+ | </p> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
<!--- Section 1 ---> | <!--- Section 1 ---> | ||
<div style="text-align:center"> | <div style="text-align:center"> | ||
− | <img src="https://static.igem.org/mediawiki/2018/f/fd/T--hebrewu--model1.png" style="width: | + | <img src="https://static.igem.org/mediawiki/2018/f/fd/T--hebrewu--model1.png" style="width:40%"> <br/> |
− | <a onClick="document.getElementById('huji_model_1').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/4/47/T--hebrewu--model2.1.png" style="width: | + | <a onClick="document.getElementById('huji_model_1').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/4/47/T--hebrewu--model2.1.png" style="width:20%"> |
</a> | </a> | ||
− | <a onClick="document.getElementById('huji_model_2').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/1/18/T--hebrewu--model2.2.png" style="width: | + | <a onClick="document.getElementById('huji_model_2').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/1/18/T--hebrewu--model2.2.png" style="width:20%"> |
</a><br/> | </a><br/> | ||
<a onClick="document.getElementById('huji_model_3').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/d/d9/T--hebrewu--model3.png" style="width:40%"> | <a onClick="document.getElementById('huji_model_3').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/d/d9/T--hebrewu--model3.png" style="width:40%"> | ||
Line 426: | Line 440: | ||
<div class="w3-container"> | <div class="w3-container"> | ||
<br /> | <br /> | ||
− | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5">Dehalogenases currently reported are involved in the cleavage of P-X and C-X bonds in the Brenda database. More than 90% of dehalogenases cleave C-X bonds. Such C-X bonds mainly exist in the halocarbons, halohydrins, and haloacids and their derivatives8,9,10. 2-Haloacid dehalogenases (2-HADs) catalyze the hydrolytic dehalogenation of 2-haloacids, releasing halogen ions and producing corresponding 2-hydroxyacids. 2-HADs are phylogenetically classified into two groups, I and II11. Group II enzymes include L-2-haloacid dehalogenases (L-DEXs) which specifically act on L-2-haloacids. D-2-haloacid dehalogenases (D-DEXs) and DL-2-haloacid dehalogenases (DL-DEXs) belong to Group I dehalogenases because of their high similarity in amino acid sequence. D-DEXs specifically act on D-2-haloacids, whereas DL-DEXs act on both D- and L-2-haloacids.1</p> |
<div style="text-align:center"> | <div style="text-align:center"> | ||
<br /> | <br /> | ||
Line 443: | Line 457: | ||
</li> | </li> | ||
<li> | <li> | ||
− | <a href"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899344/">Table of known Haloacid dehalogenase enzymes found in bacteria | + | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899344/">Table of known Haloacid dehalogenase enzymes found in bacteria |
</a> | </a> | ||
</li> | </li> | ||
</ul> | </ul> | ||
+ | |||
+ | |||
+ | <h2 class="w3" style="color:black;padding-left:90px;">References:</h2> | ||
+ | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | ||
+ | 1. <a href="https://www.nature.com/articles/s41598-017-19050-x">"Insights into the molecular mechanism of dehalogenation catalyzed by D-2-haloacid dehalogenase from crystal structures" by Yayue Wang, Yinghui Liu & Song Xue. Scientific Reportsvolume 8, Article number: 1454 (2018) | ||
+ | </a> <br /> | ||
+ | 2. <a href="https://cwru.pure.elsevier.com/en/publications/bacterial-2-haloacid-dehalogenases-structures-and-catalytic-prope-2">"Bacterial 2-haloacid dehalogenases: Structures and catalytic properties" by Kenji Soda and Nobuyoshi Esah. Pure and Applied Chemistry, Volume 68, Issue 11, Pages 2097–2103 (1996). | ||
+ | </a><br /> | ||
+ | </p> | ||
+ | <br /> <br /> | ||
+ | <br /> <br /> | ||
+ | |||
</p> | </p> | ||
Line 467: | Line 493: | ||
</header> | </header> | ||
<div class="w3-container"> | <div class="w3-container"> | ||
− | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> <br /> | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> <br /> Collectively, the involvement of P450s has been proven in the metabolism of aliphatic, alicyclic, and aromatic molecules in reactions resulting in hydroxylation, epoxidation, dealkylation, sulfoxydation, deamination, desulphuration, dehalogenation, and N-oxide reduction. The majority of P450s catalyze the reactions after interacting with one or more protein components which transfer electrons from NADH or NADPH to the P450s, while some of them do not require any additional protein components to achieve the reductive activation of oxygen. While bacterial CYPs are water-soluble, mammalian CYPs are bound to either ER or mitochondrial membranes. 3 4 </p> |
<h2 class="w3-center" style="color:black">Mammalian CYP450:</h2> | <h2 class="w3-center" style="color:black">Mammalian CYP450:</h2> |
Revision as of 12:22, 13 October 2018
Model
We present to you the exploratory model of our enzymatic pathway which served as the foundation of our project design and guided our lab work. We completed in depth research on enzymes families relevant to TCDD degradation, narrowing down contenders to the enzymes we would eventually use in the lab. Utilizing both biochemical analysis of reactions needed to degrade dioxins, and basing our research on prior academic studies, we compiled a comprehensive list of enzymes.