Difference between revisions of "Team:Peking"

Line 243: Line 243:
 
             <div class="content-outer">
 
             <div class="content-outer">
 
                 <div id="page-content">
 
                 <div id="page-content">
                    <div class="row add-bottom">
+
HOME
                       
+
一、 这是头
                        <section id="description" class="content">
+
Peking 2018
                            <div class="row">
+
Synthetic Phase separation-based Organelle Platform (SPOT) Abstract
                                <div class="twelve columns">
+
(一) Background and motivation
                                    <div class="texttitle">Abstract</div>
+
Ever since the beginning of life, compartment has been playing a crucial rule in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can transform into organic substances under extreme conditions, for example lightening. However, homogeneously distributed organic matters are not enough for life to emerge. It is almost impossible that all conditions are proper in the entire primordial soup.
                                    <p class="lead add-bottom" style="color:#5E5656">The problem of uranium contamination is a source of great concern. Uranium could have severe detrimental health effects (it is particularly harmful to the liver, kidney and bone) and lead to environment issues (chemical and radioactive hazards). <a href="https://2016.igem.org/Team:Peking/HP/311">Current treatment options</a> available for uranium leaks in nuclear power plants or uranium pollution around ore-fields, such as ion exchange, flocculation-setting and phytoremediation, all have limitations including their high cost, low efficiency and the sheer complexity of the involved procedures.</p>
+
That (pause) is where the compartment comes in.
                                   
+
Only after coacervate droplet forms and organic molecules condense inside, a completely different environment can be attained within, thus enabling the emergence of bio-macromolecules, or in other word, making life possible.
                                    <p class="lead add-bottom" style="color:#5E5656">To address these problems, Peking iGEM team aims to construct <a href="https://2016.igem.org/Team:Peking/Description">a novel functional biomaterial</a> consisting of multiple functional protein modules. This material is designed to be produced and secreted by bacteria, and self-assembled to form a polymer network. In combination with a specific <a href="https://2016.igem.org/Team:Peking/Uranyl-adsorption">Super Uranyl-binding Protein</a>, it obtains the ability to adsorb uranyl ions. After very short contacting with polluted water, the uranyl-laden biomaterial, which also contains a <a href="https://2016.igem.org/Team:Peking/Clearance">monomeric streptavidin module</a>, could be easily cleared using biotinylated magnetic beads.
+
In cells, compartmentalization is mainly achieved be all sorts of organelles, for instance, mitochondrion, chloroplast, lysosome etc. They take up three major roles: A, B, C
                                    </p>
+
                                   
+
                                    <p class="lead add-bottom" style="color:#5E5656">This uranyl-binding biomaterial shows a series of advantages, such as high specificity, high efficiency, self-assembly and renewability. Furthermore, the uranyl-binding module could be replaced or combined with modules that are capable of binding other heavy metal ions, as well as fluorescent proteins, obtaining <a href="https://2016.igem.org/Team:Peking/Proof">multi-functionality</a>. By taking advantage of modularization in the design, additional applications beyond uranium adsorption could be developed based on this material in the future.</p>
+
                                   
+
                             
+
                                   
+
                                </div><!—12 columns ended-->
+
  
                              <div class="twelve columns" >
+
Intuitively, for a organelle to sustain a stable compartment, it seems necessary to require a material boundary, more precisely, a membrane. Membrane-bound organelles are indeed common and stable, but from the perspective of synthesis, it is way too complicated. However, there are also non-membrane-bound organelles, for instance, stress granule, P granule and nucleolus. More importantly, their formation is guided by simple physical principals.Membrane-less organelles and phase separation. Then came the question that how can we synthase membraneless organelles.
                               
+
(二) Principles and design
                                <div class="four columns" style="text-align:center;">
+
There are a large number of phase separation phenomena in cells, summarizing which, we put forward a principle that interaction and multivalence are two preconditions of phase separation in cells. Based on this principle, we use SUMO/SIM, FKBP/Frb, etc. as interactional modules to provide diverse inducing of the condensation while we fuse homo-oligometric tags (HOTags) to introduce multivalence. We named our system SPOT(Synthetic Phase separation-based Organelle Platform) because it can form granules( we can see fluorescent spots in yeast under microscope) in yeast.
                                <p style="text-align:center;"><a href="https://2016.igem.org/Team:Peking/Crosslinking"><img style="width:  %;" src="https://static.igem.org/mediawiki/2016/b/b3/T--Peking--image_H1.png " alt="" /></p></a>
+
() SPOT construction and verification
                                <p style="font-family:raleway-bold, sans-serif !important;font-size:24px !important; text-align:center; margin-top:20px;">Crosslinking</p>
+
We try diverse interactional modules to construct the synthetic organelles and then modeled our system according to the theory of phase separation. As this model predicts, different promoters alter the features and kinetics of our systems, which were well validated by experiments
                                <p style="font-family:raleway-regular, sans-serif !important; font-weight:100;font-size:18px !important; text-align:justify;">By taking advantage of the covalent crosslinking of SpyTag and SpyCatcher, a polymer network was designed to possess special properties, such as strong mechanical strength, large contact area and stable structure. </p>
+
(四) Functions of synthetic organelles
                                <p><a href="https://2016.igem.org/Team:Peking/Crosslinking">Learn more...</a></p>
+
We verified the feasibility of several potential functions theoretically and experimentally, including reaction crucible and sensor, etc. In the future, by replacing functional modules with other parts, this system would conduct functions not included in the current project.
                               
+
                                </div>
+
                               
+
                               
+
                               
+
                                <div class="four columns" style="text-align:center;">
+
                                <p style="text-align:center;"><a href="https://2016.igem.org/Team:Peking/Secretion"><img style="width:  %;" src="https://static.igem.org/mediawiki/2016/1/1f/T--Peking--image_H2.png" /></p></a>
+
                                <p style="font-family:raleway-bold, sans-serif !important;font-size:24px !important; text-align:center; margin-top:20px;">Secretion</p>
+
                                <p style="font-family:raleway-regular, sans-serif !important; font-weight:100;font-size:18px !important; text-align:justify;">To make the polymer network reproductive and economical, a signal peptide library was constructed. We carried out a series of experiments to find an optimal secretion strategy.</p>
+
                                <p><a href="https://2016.igem.org/Team:Peking/Secretion">Learn more...</a></p>
+
                               
+
                                </div>
+
                               
+
                               
+
                               
+
                                <div class="four columns" style="text-align:center;">
+
                                <p style="text-align:center;"><a href="https://2016.igem.org/Team:Peking/Clearance"><img style="width:  %;" src="https://static.igem.org/mediawiki/2016/9/95/T--Peking--image_H3.png" alt=""/></p></a>
+
                                <p style="font-family:raleway-bold, sans-serif !important;font-size:24px !important; text-align:center; margin-top:20px;">Clearance</p>
+
                                <p style="font-family:raleway-regular, sans-serif !important; font-weight:100;font-size:18px !important; text-align:justify;">The monomeric streptavidin constructed in the polymer network could realize the clearance of Spy Crosslinking Network in the environment by interacting with biotinylated magnetic beads. </p>
+
                                <p><a href="https://2016.igem.org/Team:Peking/Clearance">Learn more...</a></p>
+
                               
+
                                </div>
+
                               
+
                                </div>
+
                               
+
 
+
 
+
 
+
 
+
<div class="twelve columns"  style="margin-top:25px;">
+
                               
+
                               
+
                               
+
                               
+
                               
+
                                <div class="four columns" style="text-align:center;">
+
                                <p style="text-align:center;"><a href="https://2016.igem.org/Team:Peking/Model"><img style="width:  %;" src="https://static.igem.org/mediawiki/2016/a/aa/T--Peking--image_H4.png
+
" /></p></a>
+
                                <p style="font-family:raleway-bold, sans-serif !important;font-size:24px !important; text-align:center; margin-top:20px;">Model</p>
+
                                <p style="font-family:raleway-regular, sans-serif !important; font-weight:100;font-size:18px !important; text-align:justify;">To accurately describe the Gel Point (GP) and the Mass Distribution (MD) for our polymer network, we built up two amendatory models that can adequately describe the characters and deepen our knowledge of our novel biomaterial.</p>
+
                                <p><a href="https://2016.igem.org/Team:Peking/Mode">Learn more...</a></p>
+
                               
+
                                </div>
+
                               
+
                                <div class="four columns" style="text-align:center;">
+
 
+
                                <p style="text-align:center;"><a href="https://2016.igem.org/Team:Peking/Software"><img style="width:  %;" src="https://static.igem.org/mediawiki/2016/b/b3/T--Peking--image_H5.png
+
" alt="" /></p></a>
+
                                <p style="font-family:raleway-bold, sans-serif !important;font-size:24px !important; text-align:center; margin-top:20px;">Software</p>
+
                                <p style="font-family:raleway-regular, sans-serif !important; font-weight:100;font-size:18px !important; text-align:justify;">To calculate the Gel Point (GP) and the Mass Distribution (MD) for our polymer network, we established a useful software called SoP that can apply to all the crosslinking reactions between the chosen monomers.</p>
+
                                <p><a href="https://2016.igem.org/Team:Peking/Software">Learn more...</a></p>
+
                               
+
                                </div>
+
                               
+
                                <div class="four columns" style="text-align:center;">
+
                                <p style="text-align:center;"><a href="https://2016.igem.org/Team:Peking/HP/Gold"><img style="width:  %;" src="https://static.igem.org/mediawiki/2016/c/ce/T--Peking--image_H6.png
+
" alt=""/></p></a>
+
                                <p style="font-family:raleway-bold, sans-serif !important;font-size:24px !important; text-align:center; margin-top:20px;">Human practices</p>
+
                                <p style="font-family:raleway-regular, sans-serif !important; font-weight:100;font-size:18px !important; text-align:justify;">The Peking iGEM 2016 focuses on current treatments of uranium pollution worldwide, and looks for solutions using synthetic biology. We visited a institution of nuclear industry, conducted a questionnaire survey and provided public education.</p>
+
                                <p><a href="https://2016.igem.org/Team:Peking/HP/Gold">Learn more...</a></p>
+
                               
+
                                </div>
+
                               
+
                                </div>
+
                               
+
                            </div><!--row ended-->
+
 
                              
 
                              
 
                         </section>
 
                         </section>

Revision as of 19:40, 13 October 2018

Home

Slide Left Slide Right
HOME 一、 这是头 Peking 2018 Synthetic Phase separation-based Organelle Platform (SPOT) Abstract (一) Background and motivation Ever since the beginning of life, compartment has been playing a crucial rule in biological systems. The famous Miller-Urey experiment shows that inorganic molecules can transform into organic substances under extreme conditions, for example lightening. However, homogeneously distributed organic matters are not enough for life to emerge. It is almost impossible that all conditions are proper in the entire primordial soup. That (pause) is where the compartment comes in. Only after coacervate droplet forms and organic molecules condense inside, a completely different environment can be attained within, thus enabling the emergence of bio-macromolecules, or in other word, making life possible. In cells, compartmentalization is mainly achieved be all sorts of organelles, for instance, mitochondrion, chloroplast, lysosome etc. They take up three major roles: A, B, C Intuitively, for a organelle to sustain a stable compartment, it seems necessary to require a material boundary, more precisely, a membrane. Membrane-bound organelles are indeed common and stable, but from the perspective of synthesis, it is way too complicated. However, there are also non-membrane-bound organelles, for instance, stress granule, P granule and nucleolus. More importantly, their formation is guided by simple physical principals.Membrane-less organelles and phase separation. Then came the question that how can we synthase membraneless organelles. (二) Principles and design There are a large number of phase separation phenomena in cells, summarizing which, we put forward a principle that interaction and multivalence are two preconditions of phase separation in cells. Based on this principle, we use SUMO/SIM, FKBP/Frb, etc. as interactional modules to provide diverse inducing of the condensation while we fuse homo-oligometric tags (HOTags) to introduce multivalence. We named our system SPOT(Synthetic Phase separation-based Organelle Platform) because it can form granules( we can see fluorescent spots in yeast under microscope) in yeast. (三) SPOT construction and verification We try diverse interactional modules to construct the synthetic organelles and then modeled our system according to the theory of phase separation. As this model predicts, different promoters alter the features and kinetics of our systems, which were well validated by experiments (四) Functions of synthetic organelles We verified the feasibility of several potential functions theoretically and experimentally, including reaction crucible and sensor, etc. In the future, by replacing functional modules with other parts, this system would conduct functions not included in the current project.