Difference between revisions of "Team:Peking/Model"

Line 26: Line 26:
 
         <style>
 
         <style>
 
             .texttitle{
 
             .texttitle{
                 color: #11abb0;
+
                 color:#6495ED;
                 font-size: 38px;
+
                 font-size: 20px;
 
                 line-height: 48px;
 
                 line-height: 48px;
 
                 margin-bottom: 12px;
 
                 margin-bottom: 12px;
Line 35: Line 35:
 
                 text-transform: uppercase;
 
                 text-transform: uppercase;
 
                 font-weight: 350;
 
                 font-weight: 350;
                text-align: center;
+
              text-align:center;  
                padding-top:40px;
+
     
 +
              padding-top:40px;
 
             }
 
             }
 
         sup{font-size:11px;}
 
         sup{font-size:11px;}
Line 289: Line 290:
 
             <div class="row">
 
             <div class="row">
 
                 <div class="twelve columns centered text-center">
 
                 <div class="twelve columns centered text-center">
                     <h1>Demonstrate</h1>
+
                     <h1>Human Practices</h1>
                    <p class="title1" style="text-align:center">In this section, you could see the demonstration.</p>
+
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </div><!-- Page Title End-->
 
         </div><!-- Page Title End-->
       
 
       
 
 
         <div id="page-content" class="row page">
 
         <div id="page-content" class="row page">
 
             <div id="primary" class="twelve columns">
 
             <div id="primary" class="twelve columns">
Line 308: Line 306:
 
                                 <div id="sidebar" style="color:#000000">
 
                                 <div id="sidebar" style="color:#000000">
 
                                     <h4><a href="javascript:void(0);" onclick="naver('A')">Overview</a></h4>
 
                                     <h4><a href="javascript:void(0);" onclick="naver('A')">Overview</a></h4>
                                     <h4><a href="javascript:void(0);" onclick="naver('B')">Phase&nbsp;Separation</a></h4>
+
                                     <h4><a href="javascript:void(0);" onclick="naver('B')">Statistics</a></h4>
                                    <ul>
+
                                     <h4><a href="javascript:void(0);" onclick="naver('C')">Public&nbsp;Engagement</a></h4>
                                        <li><a href="javascript:void(0);" onclick="naver('B1')">Spontaneous</a></li>
+
                                     <h4><a href="javascript:void(0);" onclick="naver('D')">Other</a></h4>
                                        <li><a href="javascript:void(0);" onclick="naver('B2')">The&nbsp;formation</a></li>
+
                                    </ul>
+
                                     <h4><a href="javascript:void(0);" onclick="naver('C')">Functional&nbsp;Organelles</a></h4>
+
                                     <h4><a href="javascript:void(0);" onclick="naver('D')">Perspective</a></h4>
+
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 331: Line 325:
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>The aim of our project is to build a synthetic organelle based on phase separation as a multifunctional platform. Based on the principle of multivalence and interaction, we fused interactional modules into homo-oligomeric tags (HOtags) to form granules in S. cerevisiae.</p>
+
                                     <p>Our team seeks to synthesize membrane-less organelles and turn it into a multi-functional toolbox for synthetic biology based on basic phase separation principles, which is a rather fundamental field in condensed matter physics. Therefore, it’s not really a reality application so far. Nonetheless, it’s definitely not the reason that we are confined in the laboratory coping with experiments and mathematical models without making a difference to the society directly. Meanwhile, we need to get to know about the demand of engineers and consumers. Thus we did an integrated human practice in several different ways.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 337: Line 331:
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>We have built spontaneous and induced synthetic organelles by specific interaction modules, so that we can control the formation process by different ways for demands in biological engineering. Then we characterized the kinetics and properties of synthetic organelles theoretically and experimentally. These results confirm the potential of synthetic organelles in synthetic biology.</p>
+
                                     <p>Inside the iGEM community, we made statistics of the education background and numbers of igemers each year in order to investigate how iGEM has been broadcasted internationally and how the field of synthetic biology has changed over the last 14 years. We noticed that most iGEM teams are becoming more and more diverse, which promotes the development of iGEM community but make it more challenging for team members to communicate. This can also be read as more people from different disciplines especially mathematics and physics have been devoted to systems and synthetic biology, which are interdisciplinary sciences needing various knowledge while on the same time, they can feed back to enrich the individual scientific disciplines and biology-based solutions for societal problems can be worked out.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
Line 343: Line 337:
 
                                  
 
                                  
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>It inspired us to propose some specific applications of our synthetic organelles, including organization hub, sensor, and metabolism regulator. We have verified the feasibility of them by loading GFP-nanobody module, NAD+ sensor module and carotene production module to the whole system.</p>
+
                                     <p>We also tried to play an active part in public engagement. We communicated with people from various backgrounds in universities, high schools, kindergartens and on the internet. We realized that there has always been a gap between the achievements in scientific research and reality application. People from academic world and industrial world barely know each others’ requirements most of the time. Thus we discussed this topic in detail using fluorescence microscope as an example.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
 
<div class="coll">
 
<div class="coll">
                               
 
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>We believe that our work has reached the medal requirements of demonstration as we have confirmed that our synthetic organelles can be formed in vivo and deliver a range of functions both for engineering and research due to their amazing properties. The concrete demonstration of the whole platform is shown below. You can see more details of experiments and modeling in our <a href="https://2018.igem.org/Team:Peking/Results"/>Data Page</a> and <a href="https://2018.igem.org/Team:Peking/Model"/>Modeling</a></p><br/><br/><br/>     
+
                                     <p>Our human practice reinforced our team construction creating more chance for the team members to communicate and collaborate with each other. We tried to make synthetic biology accessible for as many people as possible and we do expect our efforts may make a difference. Meanwhile, we’d be more than glad if our work may give the synthetic biology community some inspiration. To gain a deeper understanding of biology in the 21st century, we need to integrate knowledge from various disciplines while biology-based solutions to societal problems can influence the world more profoundly. </p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
         
+
<div class="coll">
                   
+
                                <div class="content">
 +
                                    <p>In the following sections, you will go through our human practice in details.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="texttitle"><a id="B"></a>Investigation on the education background of iGEMers
 +
</div>
 +
                            <hr style="border:2px dashed; height:2px" color="#666666">
 +
                            </div>
  
<div class="texttitle">Phase Separation System
+
<div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/d/d6/T--Peking--HP1.jpeg">
<a id="B"></a></div>
+
<br/>Figure 1<br/></div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>Figure 1 shows the geographical distribution of the number of teams. (2007-2018)
 +
</p>
 +
                                </div>
 +
                            </div>
 +
<img src="https://static.igem.org/mediawiki/2018/7/7e/T--Peking--HP2.png">
 +
Figure 2.A
 +
<img src="https://static.igem.org/mediawiki/2018/3/3c/T--Peking--HP3.png">
 +
Figure 2.B
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>Figure 2.A, B show teams attending iGEM from different regions. Figure 2.A shows the number while Figure 2.B shows the proportion of teams in each year (2007-2018) . Different colors of columns represent different regions. </p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>In 2007, only 61 teams from around the world participated in iGEM, but iGEM has now attracted more than 300 teams from around the world for three consecutive years(305 teams in 2016, 338 teams in 2017, 370 teams in 2018).  Especially since 2015, IGEM has teams from Africa every year.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>Overall, it could be found that the number of teams increases with the year. Though teams mainly come from Asia, North America and Europe, we still find more and more African and Latin American teams participating in this important event in the field of synthetic biology. We have reasons to believe that the influence of iGEM in developing countries is gradually increasing.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>In addition, we find that iGEM's influence in Asia, especially in the Western Pacific, is gradually increasing. Asia has become an important pillar in iGEM that cannot be ignored.</p>
 +
                                </div>
 +
                            </div>
 +
<img src="https://static.igem.org/mediawiki/2018/4/40/T--Peking--HP4.png">
 +
Figure 3.A
 +
<img src="https://static.igem.org/mediawiki/2018/8/88/T--Peking--HP5.png">
 +
Figure 3.B
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>Figure 3.A.B show the proportion of track selections in 10 years. Figure3.A shows the proportion in 2009-2013 and Figure3.B in 2014-2018. Different colors of columns represent different tracks.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>In the 2009-2013 track selection, ‘Foundational Research’ entered the Top 3 tracks that were most popular in the past five times, followed by ‘Enviroment’ 4 times, ‘Health’ 3 times, and ‘New application’ 3 times.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>In 2014, iGEM officially made major adjustments to the track. Added the resources of ‘Community labs’, ‘Hardware’, ‘Measurement’, ‘Microfluids’, ‘Arts & Design’, and split the original ‘Food & Energy’ into ‘Energy’, ‘Food & Nutrition’ (2014);and split ‘Health’ into ‘Diagnostics' and ‘Therapeutics’ in 2016. After the adjustment, if we do not count ‘High school’ as a scientific research track, then the Top 3 list is as shown in the table below.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p><div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/d/d6/T--Peking--HP6.png" width="70%">
 +
<br/>Table 1<br/></div>Table 1 shows the top three tracks that are most popular among the participating teams in 10 years.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>We find that in 2009-2018, iGEM's participating teams are more concerned with the four aspects of Environment, Foundational Research, Health & Medicine, and New application. This implies that environmental pollution and health care are still the most popular issues in the world.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>It is worth noting that compared with 2009, the choice of track in 2018 is more diversified, and the track of ‘Art & Design’ and other humanities and social sciences has received enough attention.</p>
 +
                                </div>
 +
                            </div>
 +
<img src="https://static.igem.org/mediawiki/2018/7/7f/T--Peking--HP7.png">
 +
Figure 4.A
 +
<img src="https://static.igem.org/mediawiki/2018/5/57/T--Peking--HP8.png">
 +
Figure 4.B
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>Figure4.A, B show the academic background of the participants. Different colors of columns represent different subjects.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>We obtained information about the participants’ academic background by counting the Wiki of each team. It should be noted that since many teams do not introduce the academic background of the team members, we have not been able to record all the subject information of each individual.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>Judging from the information we recorded, the number of players participating each year has gradually increased. Among them, members from Biology & Health Science accounts for the majority, followed by Multidisciplinary and Computer & Engineering. In particular, compared to 2007, the academic background of the contestants in 2016 is more diverse. Other than this, every year, in addition to members of other natural sciences from mathematics, physics, chemistry, environment, etc., there are also members from the social sciences and humanities. We believe that iGEM is playing an increasingly important role in promoting multidisciplinary communication and promoting engineering in the field of synthetic biology.</p>
 +
                                </div>
 +
                            </div>
 +
                            <div class="texttitle">Public engagement
 +
<a id="C"></a></div>  
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
 
                             <hr style="border:2px dashed; height:2px" color="#666666">
                            <div class="coll">
+
<div class="coll">
                                 <div class="info">
+
                                 <div class="content">
<a id="B1"></a>
+
                                     <p>Talking with high school students</p>
                                     <div class="ordi">1.</div>
+
 
                                 </div>
 
                                 </div>
 +
                            </div>
 +
<div class="coll">
 
                                 <div class="content">
 
                                 <div class="content">
                                     <h3>Spontaneous and induced synthetic organelles can be formed by phase separation</h3>
+
                                     <p>One of our team members Guo Fuyu went to Hutian Middle School in Huaihua, Hunan Province. He introduced systems and synthetic biology to the students while helped them with biology in high school as well. To our point of view, it’s of foundamental significance to provide as much middle school students in second-tier cities in China as possible with access to frontier science, for quality education is definitely as important as examination-oriented education.
 +
<div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/7/7f/T--Peking--hp11.jpeg">
 +
<br/>XXXXXXX. 1</div>
 +
</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
+
<div class="coll">
                            <div class="coll">
+
 
+
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>Our basic system consists of two components of synthetic organelles. Either of them has a specific HOtag to form homo-oligomers. We expect that they are able to form synthetic organelles due to the principles of phase separation. To verify the feasibility of the design, we fused two fluorescence proteins with the two components of synthetic organelles (Figure1.a) so that we can observe the self-organization of components and the formation of granules under fluorescence microscope.</p>
+
                                     <p>According to a survey in Peking University, freshmen who have had a sense of high education and sought for their interest in high school get accustomed to college life and study remarkably faster than those who haven’t. We genuinely hope university students and professors across China can communicate more with high school students and help every single one find his or her own interest worth pursuing their whole life as soon as possible. We especially hope the students in second-tier cities and rural areas get the same chance of quality education as those in supercities.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
 
                            <div class="coll">
 
  
 +
<div class="coll">
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>We used SUMO-SIM interaction module to build a spontaneous organelle. When two components are expressed in yeasts, granules with the two fluorescence proteins can be observed in vivo (Figure1.b). </p>
+
                                     <p>pre school scientific education</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
 
                            <div class="coll">
 
  
 +
<div class="coll">
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>Meanwhile, by rapamycin induced interaction module, FKBP-Frb, we have built an inducible organelle. We can see granules occurs in yeasts within minutes after adding the inducer.</a> </p>
+
                                     <p>May it be a crazy idea to introduce the most cutting-edge science to the kids in kindergarten, the kids and us can still spend a nice day with science. Two of our team members did this in the kindergarten attached to Peking University. We designed a series of games with the background of science: demonstrating the three phases of water, observing phase separation, constructing a “phase separation” system with magnet ball and water drawing. The kids liked these games very much which inspired us a lot.</p>
 
                                 </div>
 
                                 </div>
Figure1.a The basic design of synthetic organelles with florescence reporters. <img src="https://static.igem.org/mediawiki/2018/3/36/T--Peking--Logo.png" style="width:100%;" alt="">(这里可能需要一张cartoon的设计图)
 
            b, c fluorescence images of spontaneous organelles (SUMO-SIM based) and inducible synthetic organelles (FKBP-Frb based, after adding 10000 nM rapamycin)<br/><br/>
 
 
 
                             </div>
 
                             </div>
  
 
+
<div class="coll">
                            <div class="coll">
+
                                <div class="info">
+
<a id="B2"></a>
+
                                    <div class="ordi">2.</div>
+
                                </div>
+
 
                                 <div class="content">
 
                                 <div class="content">
                                     <h3>The formation of organelles has flexible but predictable properties and kinetics in different conditions</h3>
+
                                     <p>It’s a big challenge for us to tell the children about basic science, but we’re happy to see them enjoying the games which is also interesting and relaxing for us. We enjoyed the fascination of science which is believed to cross the boundary of age and life experience.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
 
                            <div class="coll">
 
  
 +
<div class="coll">
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>Then we combined <a href="https://2018.igem.org/Team:Peking/Phase_Separation_M"/>modeling of phase separation</a> and experiment to research the kinetics of the organelles formation process expecting that a well-characterized system can reach its whole potential in complex applications. </p>
+
                                     <p>This activity made us confident about the perspective of scientific communication, and we realized we can communicate in a both “meaningful” and “interesting” way, where all the talkers are equal and relaxed and the conversation is much more efficient.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
 
                            <div class="coll">
 
  
 +
<div class="coll">
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>As the model predicts, the concentration of components and the interaction strength affect the kinetics of phase separation. First we controlled the expression levels of components by using several stable or inducible promoters and observe the system's behavior. We found that the formation of organelles happened in specific promoter combinations and can be controlled by inducible promoters. The analysis result does not only fit well with the simulation, but provides potential methods to control the organelles in applications. </p>
+
                                     <p>Documentation of Peking iGEM as enlightenment for beginners</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
 
                            <div class="coll">
 
<br/>
 
Figure2 (a) Phase diagram of a phase separation system with three components(simulation). To fit our system, the x-axis and the y-axis stands for the two components in the granules. The asymmetry comes from the assumption that the two components have different interactions with water.
 
(b) Fluorescence movies of different promoter combinations of FKBP-Frb mediated system after adding rapamycin. Only in specific combinations, synthetic organelles can be formed by phase separation.
 
(c) The formation process of SUMO-SIM mediated synthetic organelles can be controlled by inducible promoters. While the expression of Tet07-SIM-mCherry-HoTag6 is induced by dox gradually, the granules will occur abruptly in some time.<br/><br/>
 
  
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>We have built up a WeChat public platform which is a worldwide platform with billions of users for documentation, communication and popularization. To give the future iGEMers a taste of iGEM projects and help them learn the basic rudiments of synthetic biology we have reviewed the projects of Peking iGEM in the past 14 years. All these articles are rather approachable and most of them received positive feedbacks. We demonstrate here the articles and hope it may help more people who want to get to know about synthetic biology.</p>
 +
                                </div>
 
                             </div>
 
                             </div>
                            <div class="coll">
 
  
 +
<div class="coll">
 
                                 <div class="content">
 
                                 <div class="content">
                                    <p>The strength of interaction modules can be also controlled. In the rapamycin-induced organelle system, changing the concentration of rapamycin will affect the apparent value of K, a parameter reflecting the interaction strength in our model. In a gradient rapamycin-inducing experiment, the delay time from adding inducer to granules formation was found to be shorter when concentration of rapamycin increases. So we have confirmed the influence of two parameters in models and increased the flexibility of our synthetic organelles.</p>
+
<table border="0">
 +
  <tr>
 +
    <th><a href="https://mp.weixin.qq.com/s/AMd0rNq9AQDu02cUu7HvWw"><img src="https://static.igem.org/mediawiki/2018/c/c3/T--Peking--2007.png"></a></th>
 +
    <th><a href="https://mp.weixin.qq.com/s/uhbTZHsgPL8b3YPLm_K9kQ"><img src="https://static.igem.org/mediawiki/2018/c/cb/T--Peking--2008.png"></a></th>
 +
  </tr>
 +
  <tr>
 +
    <td>2007</td>
 +
    <td>2008</td>
 +
  </tr>
 +
  <tr>
 +
    <th><a href="https://mp.weixin.qq.com/s/dQj9qOFF_kKO_d7QDMsanQ"><img src="https://static.igem.org/mediawiki/2018/1/1b/T--Peking--2009.png"></a></th>
 +
    <th><a href="https://mp.weixin.qq.com/s/5qaRHr0pBmB0SphxrpDanQ"><img src="https://static.igem.org/mediawiki/2018/7/7f/T--Peking--2010.png"></a></th>
 +
  </tr>
 +
  <tr>
 +
    <td>2009</td>
 +
    <td>2010</td>
 +
  </tr>
 +
  <tr>
 +
    <th><a href="https://mp.weixin.qq.com/s/O8sPYmyyIwO_evpzao0DhQ"><img src="https://static.igem.org/mediawiki/2018/1/14/T--Peking--2011.png"></a></th>
 +
    <th><a href="https://mp.weixin.qq.com/s/Xt5fROM6MSL6DHWSaDWaew"><img src="https://static.igem.org/mediawiki/2018/3/3d/T--Peking--2012.png"></a></th>
 +
  </tr>
 +
  <tr>
 +
    <td>2011</th>
 +
    <td>2012</th>
 +
  </tr>
 +
  <tr>
 +
    <th><a href="https://mp.weixin.qq.com/s/m-Ttirv-yjhokSnFQa0qMA"><img src="https://static.igem.org/mediawiki/2018/0/08/T--Peking--2013.png"></a></td>
 +
    <th><a href="https://mp.weixin.qq.com/s/mVa2p41Yc8yHtqFg4Akwcg"><img src="https://static.igem.org/mediawiki/2018/5/5a/T--Peking--2015.png"></a></td>
 +
  </tr>
 +
  <tr>
 +
    <td>2013</th>
 +
    <td>2015</th>
 +
  </tr>
 +
  <tr>
 +
    <th><a href="https://mp.weixin.qq.com/s/o2e5y0g0luZuYS957KLMJQ"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Peking--2016.png"></a></td>
 +
    <th><a href="https://mp.weixin.qq.com/s/VwFxEy7ab46vAF9Q3A9vcg"><img src="https://static.igem.org/mediawiki/2018/f/fe/T--Peking--2017.png"></a></td>
 +
  </tr>
 +
  <tr>
 +
    <td>2016</th>
 +
    <td>2017</th>
 +
  </tr>
 +
</table>
 +
 
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                            <div class="coll">
 
<br/>
 
Figure3 (a) A simulation of organelle formation process in different interaction strength of components.
 
(b) The speed of FKBP-Frb mediated organelle formation increases with the increasing concentration of rapamycin.
 
<br/><br/>
 
 
                            </div>                           
 
                            <div class="coll">
 
  
 +
<div class="coll">
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>We also tried to characterized other properties, like the liquid-like property of the synthetic organelles, as they may affect the functions. See more details about our characterizations in <a href="https://2018.igem.org/Team:Peking/Phase_Separation_D"/>DataPage Phase separation</a>.</p><br/><br/><br/>
+
                                     <p>Popular video of phase separation</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
  
                       
+
<div class="coll">
                           
+
                                <div class="content">
 +
                                    <p>We made a popular video of phase separation in biology to introduce it to more people studying biology. We posted it on several websites in China and many undergraduates and graduates have got to known phase separation through our video. We also found it necessary to communicate more about basic knowledge of different disciplines in the area of systems biology. Only in this way can people know better about the system they work on and cooperate better with each other.
 +
(张蔚phase视频,网盘上有)
 +
</p>
 +
                                </div>
  
                            <div class="texttitle">Functional Organelles
+
<div class="coll">
<a id="C"></a></div>
+
                                <div class="texttitle"><a id="D"></a>Making low-cost experimental instrument</div>  
                            <hr style="border:2px dashed; height:2px" color="#666666">
+
                                <hr style="border:2px dashed; height:2px" color="#666666">
                             <div class="coll">
+
                                </div>
 +
                             </div>
 +
<div class="coll">
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>Since SPOT can form in the cell and be controlled, we go further to consider the functions of SPOT. The functions of SPOT can be descripted in three catalogs: Spatial segmentation, Sensor and metabolic regulation. We verified the spatial segmentation with the condensation of substrates, also we can load the protein we want by fusing it with nanobody. We then verified the sensor with detecting rapamycin and ABA, which shows strong relativity between the concentration and the proportion of yeasts with SPOT. To find the law behind metabolism in the SPOT, we fuse the enzymes that can produce β-carotene into SPOT and measure the difference between with or without SPOT in produce of β-carotene.</p>
+
                                     <p>We find it an essential problem in synthetic biology to fill the gap between foundational research and practical application. We hope our human practice can propose some possible solutions to this problem. Taking our time and energy into consideration, we chose a minor project, the design and usage of low-cost equipment, as the main subject.</p>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                                                       
+
<div class="coll">
                            <div class="coll">
+
                                <div class="content">
Figure4 (organization hub)
+
                                    <p>Most of the results of iGEM research have been achieved in the laboratory, but there’s a big difference between the environment of laboratory and reality use. For example, it’s more than common to use microscope in laboratory, but people rarely get access to microscope in production for the sake of expense and precision. Can differences like this be an impediment of the transformation from laboratory achievements to industrial production? What can we do about these problems?</p>
Design of GFP-nanobody based system
+
                                </div>
fluorescence images of GFP-nanobody based system
+
Figure5 (sensor)
+
(a)~(?) fluorescence images of sensor based system
+
Figure6 (metabolism)
+
Characterization of carotene production system
+
(phase内和phase外的胡萝卜素生产实验)<br/><br/><br/><br/><br/>
+
 
+
 
                             </div>
 
                             </div>
                           
+
<div class="coll">
 
+
                            <div class="texttitle">Perspective
+
<a id="D"></a></div>
+
                            <hr style="border:2px dashed; height:2px" color="#666666">
+
                            <div class="coll">
+
 
                                 <div class="content">
 
                                 <div class="content">
                                     <p>SPOT has been well verified and has various functions. And in the future, this modular system will have great potential in science and practice using. SPOT can change the modules to gain more different properties like diverse inducing method, we can also use it as a platform and then load other protein with some interactions like the interaction between nanobody and GFP. What’s more, we might have the ability to form differernt SPOTs in the cell and regulate them respectively. The functions of SPOT can also diverse. We can build a real time sensor for molecule in living cells to monitoring the concentration changing in environment or in cells. More metabolism pathway can be test in SPOT and we will find some laws of the function of regulate the metabolism. To be summary, more achievement is coming true with SPOT.</p>
+
                                     <p>We talked with Professor Xu Luping from Tsinghua University, who designed a low-cost microscope from 3D-printer. We got to know from the interview that most of the parts are easy to get, while it’s also not difficult to assemble. We talked about the possible application of this kind of microscopes and the probability to expand it into fluorescence microscopes.
 +
<div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/5/5b/T--Peking--hp12.png">
 +
<br/>XXXXXXX. 1</div>
 +
</p>
 
                                 </div>
 
                                 </div>
                             </div>                          
+
                             </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>So far, this kind low-cost microscope is still conceptual productions which is mainly used for popular science or education, but it’s still helpful to the future work. To Professor Xu’s point of view, realizing a possibility in engineering is of great significance in itself. This has enlighten us to summarize some abstract and modularized ‘potential properties’ in our project apart from seeking for practical application of our bioparts.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>It also came to us that the main difficulty of our subject to build a low-cost fluorescence microscope lies in the cost of equipping fluorescence light source. Fluorescence technology plays a significant part in synthetic biology scientific research, but it’s much too expensive in industry. We talked about the possibility to lower the cost of fluorescence technology and think it probably necessary to try to develop low precision and low cost fluorescence technology, especially when it’s quite usual to combine fluorescence technology with biotechnology now.</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                    <p>So we communicated with Dr Zong Yeqing, who showed us his self-made fluorescence stereomicroscope. Fluorescence stereomicroscope is needed in a project but there isn’t one in the institute he works in and it’s not worthwhile to spend millions of RMB yuan to buy one for one single project. So he built one himself. The total cost of his self-made fluorescence stereomicroscope is 1000 RMB yuan. It can be used for observation, incubation and heating. The communication with Dr. Zong Yeqing not only gave us the hope of building low-cost fluorescence instrument for production and medication, but also reminded us of the significance of building low-cost instrument for scientific research itself.
 +
<div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/8/81/T--Peking--hp13.png">
 +
<br/>XXXXXXX. 1</div>
 +
<div style="text-align: center;"><img src="https://static.igem.org/mediawiki/2018/1/11/T--Peking--hp14.png">
 +
<br/>XXXXXXX. 1</div>
 +
</p>
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                                <div class="content">
 +
                                   
 +
                                </div>
 +
                            </div>
 +
<div class="coll">
 +
                               
 +
                                <div class="content">
 +
                                 
 +
                                </div>
 +
                            </div>
 +
         
 
                              
 
                              
 
                         </div><!--9 columns end-->
 
                         </div><!--9 columns end-->

Revision as of 17:53, 15 October 2018

Human Practices

Overview

Our team seeks to synthesize membrane-less organelles and turn it into a multi-functional toolbox for synthetic biology based on basic phase separation principles, which is a rather fundamental field in condensed matter physics. Therefore, it’s not really a reality application so far. Nonetheless, it’s definitely not the reason that we are confined in the laboratory coping with experiments and mathematical models without making a difference to the society directly. Meanwhile, we need to get to know about the demand of engineers and consumers. Thus we did an integrated human practice in several different ways.

Inside the iGEM community, we made statistics of the education background and numbers of igemers each year in order to investigate how iGEM has been broadcasted internationally and how the field of synthetic biology has changed over the last 14 years. We noticed that most iGEM teams are becoming more and more diverse, which promotes the development of iGEM community but make it more challenging for team members to communicate. This can also be read as more people from different disciplines especially mathematics and physics have been devoted to systems and synthetic biology, which are interdisciplinary sciences needing various knowledge while on the same time, they can feed back to enrich the individual scientific disciplines and biology-based solutions for societal problems can be worked out.

We also tried to play an active part in public engagement. We communicated with people from various backgrounds in universities, high schools, kindergartens and on the internet. We realized that there has always been a gap between the achievements in scientific research and reality application. People from academic world and industrial world barely know each others’ requirements most of the time. Thus we discussed this topic in detail using fluorescence microscope as an example.

Our human practice reinforced our team construction creating more chance for the team members to communicate and collaborate with each other. We tried to make synthetic biology accessible for as many people as possible and we do expect our efforts may make a difference. Meanwhile, we’d be more than glad if our work may give the synthetic biology community some inspiration. To gain a deeper understanding of biology in the 21st century, we need to integrate knowledge from various disciplines while biology-based solutions to societal problems can influence the world more profoundly.

In the following sections, you will go through our human practice in details.

Investigation on the education background of iGEMers


Figure 1

Figure 1 shows the geographical distribution of the number of teams. (2007-2018)

Figure 2.A Figure 2.B

Figure 2.A, B show teams attending iGEM from different regions. Figure 2.A shows the number while Figure 2.B shows the proportion of teams in each year (2007-2018) . Different colors of columns represent different regions.

In 2007, only 61 teams from around the world participated in iGEM, but iGEM has now attracted more than 300 teams from around the world for three consecutive years(305 teams in 2016, 338 teams in 2017, 370 teams in 2018). Especially since 2015, IGEM has teams from Africa every year.

Overall, it could be found that the number of teams increases with the year. Though teams mainly come from Asia, North America and Europe, we still find more and more African and Latin American teams participating in this important event in the field of synthetic biology. We have reasons to believe that the influence of iGEM in developing countries is gradually increasing.

In addition, we find that iGEM's influence in Asia, especially in the Western Pacific, is gradually increasing. Asia has become an important pillar in iGEM that cannot be ignored.

Figure 3.A Figure 3.B

Figure 3.A.B show the proportion of track selections in 10 years. Figure3.A shows the proportion in 2009-2013 and Figure3.B in 2014-2018. Different colors of columns represent different tracks.

In the 2009-2013 track selection, ‘Foundational Research’ entered the Top 3 tracks that were most popular in the past five times, followed by ‘Enviroment’ 4 times, ‘Health’ 3 times, and ‘New application’ 3 times.

In 2014, iGEM officially made major adjustments to the track. Added the resources of ‘Community labs’, ‘Hardware’, ‘Measurement’, ‘Microfluids’, ‘Arts & Design’, and split the original ‘Food & Energy’ into ‘Energy’, ‘Food & Nutrition’ (2014);and split ‘Health’ into ‘Diagnostics' and ‘Therapeutics’ in 2016. After the adjustment, if we do not count ‘High school’ as a scientific research track, then the Top 3 list is as shown in the table below.


Table 1
Table 1 shows the top three tracks that are most popular among the participating teams in 10 years.

We find that in 2009-2018, iGEM's participating teams are more concerned with the four aspects of Environment, Foundational Research, Health & Medicine, and New application. This implies that environmental pollution and health care are still the most popular issues in the world.

It is worth noting that compared with 2009, the choice of track in 2018 is more diversified, and the track of ‘Art & Design’ and other humanities and social sciences has received enough attention.

Figure 4.A Figure 4.B

Figure4.A, B show the academic background of the participants. Different colors of columns represent different subjects.

We obtained information about the participants’ academic background by counting the Wiki of each team. It should be noted that since many teams do not introduce the academic background of the team members, we have not been able to record all the subject information of each individual.

Judging from the information we recorded, the number of players participating each year has gradually increased. Among them, members from Biology & Health Science accounts for the majority, followed by Multidisciplinary and Computer & Engineering. In particular, compared to 2007, the academic background of the contestants in 2016 is more diverse. Other than this, every year, in addition to members of other natural sciences from mathematics, physics, chemistry, environment, etc., there are also members from the social sciences and humanities. We believe that iGEM is playing an increasingly important role in promoting multidisciplinary communication and promoting engineering in the field of synthetic biology.

Public engagement

Talking with high school students

One of our team members Guo Fuyu went to Hutian Middle School in Huaihua, Hunan Province. He introduced systems and synthetic biology to the students while helped them with biology in high school as well. To our point of view, it’s of foundamental significance to provide as much middle school students in second-tier cities in China as possible with access to frontier science, for quality education is definitely as important as examination-oriented education.


XXXXXXX. 1

According to a survey in Peking University, freshmen who have had a sense of high education and sought for their interest in high school get accustomed to college life and study remarkably faster than those who haven’t. We genuinely hope university students and professors across China can communicate more with high school students and help every single one find his or her own interest worth pursuing their whole life as soon as possible. We especially hope the students in second-tier cities and rural areas get the same chance of quality education as those in supercities.

pre school scientific education

May it be a crazy idea to introduce the most cutting-edge science to the kids in kindergarten, the kids and us can still spend a nice day with science. Two of our team members did this in the kindergarten attached to Peking University. We designed a series of games with the background of science: demonstrating the three phases of water, observing phase separation, constructing a “phase separation” system with magnet ball and water drawing. The kids liked these games very much which inspired us a lot.

It’s a big challenge for us to tell the children about basic science, but we’re happy to see them enjoying the games which is also interesting and relaxing for us. We enjoyed the fascination of science which is believed to cross the boundary of age and life experience.

This activity made us confident about the perspective of scientific communication, and we realized we can communicate in a both “meaningful” and “interesting” way, where all the talkers are equal and relaxed and the conversation is much more efficient.

Documentation of Peking iGEM as enlightenment for beginners

We have built up a WeChat public platform which is a worldwide platform with billions of users for documentation, communication and popularization. To give the future iGEMers a taste of iGEM projects and help them learn the basic rudiments of synthetic biology we have reviewed the projects of Peking iGEM in the past 14 years. All these articles are rather approachable and most of them received positive feedbacks. We demonstrate here the articles and hope it may help more people who want to get to know about synthetic biology.

2007 2008
2009 2010
2011 2012
2013 2015
2016 2017

Popular video of phase separation

We made a popular video of phase separation in biology to introduce it to more people studying biology. We posted it on several websites in China and many undergraduates and graduates have got to known phase separation through our video. We also found it necessary to communicate more about basic knowledge of different disciplines in the area of systems biology. Only in this way can people know better about the system they work on and cooperate better with each other. (张蔚phase视频,网盘上有)

Making low-cost experimental instrument

We find it an essential problem in synthetic biology to fill the gap between foundational research and practical application. We hope our human practice can propose some possible solutions to this problem. Taking our time and energy into consideration, we chose a minor project, the design and usage of low-cost equipment, as the main subject.

Most of the results of iGEM research have been achieved in the laboratory, but there’s a big difference between the environment of laboratory and reality use. For example, it’s more than common to use microscope in laboratory, but people rarely get access to microscope in production for the sake of expense and precision. Can differences like this be an impediment of the transformation from laboratory achievements to industrial production? What can we do about these problems?

We talked with Professor Xu Luping from Tsinghua University, who designed a low-cost microscope from 3D-printer. We got to know from the interview that most of the parts are easy to get, while it’s also not difficult to assemble. We talked about the possible application of this kind of microscopes and the probability to expand it into fluorescence microscopes.


XXXXXXX. 1

So far, this kind low-cost microscope is still conceptual productions which is mainly used for popular science or education, but it’s still helpful to the future work. To Professor Xu’s point of view, realizing a possibility in engineering is of great significance in itself. This has enlighten us to summarize some abstract and modularized ‘potential properties’ in our project apart from seeking for practical application of our bioparts.

It also came to us that the main difficulty of our subject to build a low-cost fluorescence microscope lies in the cost of equipping fluorescence light source. Fluorescence technology plays a significant part in synthetic biology scientific research, but it’s much too expensive in industry. We talked about the possibility to lower the cost of fluorescence technology and think it probably necessary to try to develop low precision and low cost fluorescence technology, especially when it’s quite usual to combine fluorescence technology with biotechnology now.

So we communicated with Dr Zong Yeqing, who showed us his self-made fluorescence stereomicroscope. Fluorescence stereomicroscope is needed in a project but there isn’t one in the institute he works in and it’s not worthwhile to spend millions of RMB yuan to buy one for one single project. So he built one himself. The total cost of his self-made fluorescence stereomicroscope is 1000 RMB yuan. It can be used for observation, incubation and heating. The communication with Dr. Zong Yeqing not only gave us the hope of building low-cost fluorescence instrument for production and medication, but also reminded us of the significance of building low-cost instrument for scientific research itself.


XXXXXXX. 1

XXXXXXX. 1