Difference between revisions of "Team:XJTU-China/Drylab-Models"

(formula latex edit)
(pic unpload)
Line 68: Line 68:
 
            
 
            
  
       <p>In order to predict the concentration of different substance in E.coli, we set the kinetic model according to the reaction rate theory and enzymatic reaction kinetics as our first model in our project. And the production and conversion rate model is included to simulate the directed evolution model and the natural evolution model, and then we can get the time we need in our directed evolution method of DTE. The third model we set up is the microfluidics model to predict and simulate the situation in the microfluidics chip, which is our hardware for the gradient concentration of the psicose and antibiotic to let us have a high throughput experiment. The fourth model we set is the market model to predict the future market and the coefficient between different age groups and the tendency to adopt psicose.</p>
+
       <p>In order to predict the concentration of different substance in E.coli, we set the kinetic model according to the reaction rate theory and enzymatic reaction kinetics as our first model in our project.  
 +
And the production and conversion rate model is included to simulate the directed evolution model and the natural evolution model, and then we can get the time we need in our directed evolution method of DTE.  
 +
The third model we set up is the microfluidics model to predict and simulate the situation in the microfluidics chip, which is our hardware for the gradient concentration of the psicose and antibiotic to let us have a high throughput experiment.  
 +
The fourth model we set is the market model to predict the future market and the coefficient between different age groups and the tendency to adopt psicose.</p>
  
  
Line 96: Line 99:
 
<p>In our design, the DTE process is one of the most significant part in manufacturing psicose. The main process of psicose manufacture is catalyzed by D-psicose 3-epimerase. The models of device A, B, C and D are as follows.</p>
 
<p>In our design, the DTE process is one of the most significant part in manufacturing psicose. The main process of psicose manufacture is catalyzed by D-psicose 3-epimerase. The models of device A, B, C and D are as follows.</p>
  
<img src=""/>
+
<div align="center"><img src="https://static.igem.org/mediawiki/2018/d/d7/T--XJTU-China--181016d02.png"width="400"/></div>
  
 
<p>In device A, extracellular concentration of $psicose$ is higher than the intracellular concentration, so it can enter the cells by diffusion. As a small molecular, the $psicose$ inside the cell can be combined with $pPsiR$ to generate $CCI$. $pPsiR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $psicode$,$pPsiR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$.</p>
 
<p>In device A, extracellular concentration of $psicose$ is higher than the intracellular concentration, so it can enter the cells by diffusion. As a small molecular, the $psicose$ inside the cell can be combined with $pPsiR$ to generate $CCI$. $pPsiR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $psicode$,$pPsiR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$.</p>
Line 126: Line 129:
 
<p>Where $n$ is hill coefficient, $K$ is the ligand concentration producing half occupation, $\beta_{EGFP}$ is maximal transcription rate of gene $EGFP$, and $H$ is a constant used to indicate the deviation between the theoretical and actual values.</p>
 
<p>Where $n$ is hill coefficient, $K$ is the ligand concentration producing half occupation, $\beta_{EGFP}$ is maximal transcription rate of gene $EGFP$, and $H$ is a constant used to indicate the deviation between the theoretical and actual values.</p>
  
<p><br>Calculating Results</p>
 
  
<img src="">
+
<div align="center"><img src="https://static.igem.org/mediawiki/2018/d/d0/T--XJTU-China--181016d03.png"width="400"/></div>
  
 
<p>In device B, extracellular concentration of $IPTG$ is higher than which is intracellular, so it can enter the cells by diffusion. As a small molecular, the $IPTG$ inside the cell can be combined with $pLacR$ to generate $CC$. $pLacR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $IPTG$, $pLacR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$. Since the gene of $ABR$ and the gene of $EGFP$ are connected in series, they are expressed together.</p>
 
<p>In device B, extracellular concentration of $IPTG$ is higher than which is intracellular, so it can enter the cells by diffusion. As a small molecular, the $IPTG$ inside the cell can be combined with $pLacR$ to generate $CC$. $pLacR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $IPTG$, $pLacR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$. Since the gene of $ABR$ and the gene of $EGFP$ are connected in series, they are expressed together.</p>
  
<p><br>Similarly, we can get the function of device B by using the reaction rate equation and the diffusion function. First,</p>
+
<p>Similarly, we can get the function of device B by using the reaction rate equation and the diffusion function. First,</p>
 
<p>$$\frac{\text{d}[IPTGO]}{\text{d}t}=0$$</p>
 
<p>$$\frac{\text{d}[IPTGO]}{\text{d}t}=0$$</p>
  
Line 148: Line 150:
 
<p>$$\frac{\text{d}[EGFP]}{\text{d}t}=\frac{\text{d}[ABR]}{\text{d}t}$$</p>
 
<p>$$\frac{\text{d}[EGFP]}{\text{d}t}=\frac{\text{d}[ABR]}{\text{d}t}$$</p>
 
<p>Where $[EGFP]$ is the concentration of $EGFP$ and $[ABR]$ is the concentration of antibiotic resistance protein expression.</p>
 
<p>Where $[EGFP]$ is the concentration of $EGFP$ and $[ABR]$ is the concentration of antibiotic resistance protein expression.</p>
<img src="">
 
  
 +
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/5/59/T--XJTU-China--181016d04.png"width="400"/></div>
  
 
<p>Device C is the same with device B. The only difference is the hairpin between gene of $EGFP$ and gene of $RFP$. Similarly, we can get the function of hairpin and its coefficient.</p>
 
<p>Device C is the same with device B. The only difference is the hairpin between gene of $EGFP$ and gene of $RFP$. Similarly, we can get the function of hairpin and its coefficient.</p>
Line 161: Line 164:
 
<p>$$\frac{\text{d}[EGFP]}{\text{d}t}=k\frac{\text{d}[RFP]}{\text{d}t}$$</p>
 
<p>$$\frac{\text{d}[EGFP]}{\text{d}t}=k\frac{\text{d}[RFP]}{\text{d}t}$$</p>
 
<p>Where $[RFP]$ is the concentration of red fluorescence protein, $k$ is the coefficient of hairpin.</p>
 
<p>Where $[RFP]$ is the concentration of red fluorescence protein, $k$ is the coefficient of hairpin.</p>
<img src="">
+
 
 +
 
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/c/cc/T--XJTU-China--181016d05.png"width="500"/></div>
  
  
Line 246: Line 251:
 
<p>In our Lab tour, we find that it is extremely complicated to use pipette to prepare and transfer solutions, especially gradient concentration solutions. High throughput methods to get the gradient concentration of solutions are well needed. In this case, we made a hardware by using the principle of microfluidics and then we simulate it whether it can give us different concentration by using the microfluidics device before the microfluidics chip is finally made. To get the downstream concentration of high concentration and low concentration, particle collision is used to demonstrate the downstream concentration.</p>
 
<p>In our Lab tour, we find that it is extremely complicated to use pipette to prepare and transfer solutions, especially gradient concentration solutions. High throughput methods to get the gradient concentration of solutions are well needed. In this case, we made a hardware by using the principle of microfluidics and then we simulate it whether it can give us different concentration by using the microfluidics device before the microfluidics chip is finally made. To get the downstream concentration of high concentration and low concentration, particle collision is used to demonstrate the downstream concentration.</p>
  
<img src="">
+
<div align="center"><img src="https://static.igem.org/mediawiki/2018/b/b5/T--XJTU-China--181016d06.png"width="500"/></div>
  
  
Line 275: Line 280:
 
<p>$$n(i,j)=\frac{m(i-1,j-1)\times \vec{v}+m(i-1,j)\times \vec{v}-\int f(n,l)dt}{kc(i,j)\vec{v}}$$</p>
 
<p>$$n(i,j)=\frac{m(i-1,j-1)\times \vec{v}+m(i-1,j)\times \vec{v}-\int f(n,l)dt}{kc(i,j)\vec{v}}$$</p>
 
<p>To solve our model ,the Navier-Stokes Equations are adopted with the assumption of momentum conservation and mass conservation.</p>
 
<p>To solve our model ,the Navier-Stokes Equations are adopted with the assumption of momentum conservation and mass conservation.</p>
<img src="">
+
 
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/f/f2/T--XJTU-China--181016d07.png"width="550"/></div>
 +
 
 
<p>The results are based on the assumptions as follows:</p>
 
<p>The results are based on the assumptions as follows:</p>
 
<p>Assumptions:</p>
 
<p>Assumptions:</p>
Line 290: Line 297:
 
<p>Where $D$ is the diffusion coefficient of the liquid and $c$ is the concentration of the solution.</p>
 
<p>Where $D$ is the diffusion coefficient of the liquid and $c$ is the concentration of the solution.</p>
 
<p>Taking $m,n,c$ we have mentioned, we can get the concentration distribution as follows: </p>
 
<p>Taking $m,n,c$ we have mentioned, we can get the concentration distribution as follows: </p>
<img src="">
 
  
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/1/1b/T--XJTU-China--181016d08.png"width="400"/></div>
  
  
Line 301: Line 308:
  
  
<p>In our market model, we’d like to</p>
+
<p>In our market model, we’d like to analyze the relationship between the choice of psicose and the market scale. Then, the market od psicose is predicted.</p>
 +
 
 +
 
 
<h2>Results and Discussion </h2>
 
<h2>Results and Discussion </h2>
 
</div>
 
</div>
 +
<p>Basing our model, we can calculate and simulate our system as follows:</p>
 +
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/2/2c/T--XJTU-China--181016d09.png"width="400"/></div>
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/2/2c/T--XJTU-China--181016d10.png"width="400"/></div>
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/2/2c/T--XJTU-China--181016d11.png"width="400"/></div>
 +
<p>From the picture below, it is evident that with time going by, the concentration of IPTG outside the cell will decrease due to the diffusion process, while the RFP expression level is increasing stably.</p>
  
<img src="">
 
<img src="">
 
<img src="">
 
<img src="">
 
<img src="">
 
  
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/2/2c/T--XJTU-China--181016d12.png"width="400"/></div>
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/2/2c/T--XJTU-China--181016d13.png"width="400"/></div>
 +
<p>If we do more experiments shown below, we can find that the expression level of RFP is increasing with the increase of the concentration of IPTG, which proves that we can get a linear range of IPTG to get the RFP expression level. According to device A, B, C, D, this conclusion can also be made, which proves the validation of our kinetic model</p>
  
 
<h2>Reference</h2>
 
<h2>Reference</h2>

Revision as of 23:34, 15 October 2018

Modelling

       

In order to predict the concentration of different substance in E.coli, we set the kinetic model according to the reaction rate theory and enzymatic reaction kinetics as our first model in our project. And the production and conversion rate model is included to simulate the directed evolution model and the natural evolution model, and then we can get the time we need in our directed evolution method of DTE. The third model we set up is the microfluidics model to predict and simulate the situation in the microfluidics chip, which is our hardware for the gradient concentration of the psicose and antibiotic to let us have a high throughput experiment. The fourth model we set is the market model to predict the future market and the coefficient between different age groups and the tendency to adopt psicose.

      
  1. Psicose Synthesis Kinetic Model
  2.   
  3. Production Simulink Model
  4.   
  5. Market Model
  6.   
  7. Microfluidics Model
   

In our design, the DTE process is one of the most significant part in manufacturing psicose. The main process of psicose manufacture is catalyzed by D-psicose 3-epimerase. The models of device A, B, C and D are as follows.

In device A, extracellular concentration of $psicose$ is higher than the intracellular concentration, so it can enter the cells by diffusion. As a small molecular, the $psicose$ inside the cell can be combined with $pPsiR$ to generate $CCI$. $pPsiR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $psicode$,$pPsiR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$.


For device A, the dynamic equation can be listed as follows:

Concentrations of A and B are different inside and outside the cell, so the diffusion rate of $psicose$ is proportional to the concentration difference between inside and outside of the cells.

$$\frac{\text{d}[PsiO]}{ \text{d}t}V_{outside}=-\gamma_F([PsiO]-[PsiI])$$

Where $\gamma_F$ is the diffusion coefficient.

Consider the external solution as an infinitely solution, which means $V_{outside}\rightarrow\infty$ , so

$$\frac{\text{d}[PsiO]}{ \text{d}t}=0$$

When reducer psicose combines with repressor, the process is

$$PsiI+pPsiR\rightarrow CCI$$

Where $PsiI$ is the intracellular $psicose$, $pPsiR$ is $psicose$ dependent repressor and $CCI$ is $psicose$-repressor complex. The change in concentration of $PsiI$,$pPsiR$ and $CCI$ contains three influencing factors: the binding reaction of $pPsiR$ and $psicose$, and the degradation reaction of themselves and the reverse reaction. Here we consider the binding reaction as a second order reaction and the degradation reaction and reverse reaction as first order reactions. According to law of mass action, reaction rate is proportional to the product of the reactant concentration, so we have

$$\frac{\text{d}[PsiI]}{\text{d}t}=\frac{-\gamma_F([PsiI]-[PsiO])}{V_{cell}}-m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{PsiI}[PsiI]$$

And considering $pPsiR$ is constantly expressing, we can get

$$\frac{\text{d}[pPsiR]}{\text{d}t}=\alpha_{pPsiR}-m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{pPsiR}[pPsiR]$$

Where $m_{pPsiR,Psi}$ is the coefficient of reaction rate of the binding reaction, $\alpha_{pPsiR}$ is the rate of constant expression of $pPsiR$, $\delta_{pPsiR}$ and $\delta_{PsiI}$ are coefficients of reaction rate of the degradation reaction of $pPsiR$ and $PsicoseI$ respectively.


The concentration of inactivated repressor is

$$\frac{\text{d}[CCI]}{\text{d}t}=m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{CCI}[CCI]$$

The change in $EGFP$ concentration depends on the concentration of its repressor, $pPsiR$ which can be described by Hill-equation. Considering $EGFP$ is also degrading, the equation is

$$\frac{\text{d}[EGFP]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pPsiR]^n} -\delta_{EGFP}[EGFP]$$

Where $n$ is hill coefficient, $K$ is the ligand concentration producing half occupation, $\beta_{EGFP}$ is maximal transcription rate of gene $EGFP$, and $H$ is a constant used to indicate the deviation between the theoretical and actual values.

In device B, extracellular concentration of $IPTG$ is higher than which is intracellular, so it can enter the cells by diffusion. As a small molecular, the $IPTG$ inside the cell can be combined with $pLacR$ to generate $CC$. $pLacR$ is a repressor, which can bind to promoters on DNA and block gene expression. After binding with $IPTG$, $pLacR$ falls off from the promoter and the gene starts expressing, And eventually produce the produce $EGFP$. Since the gene of $ABR$ and the gene of $EGFP$ are connected in series, they are expressed together.

Similarly, we can get the function of device B by using the reaction rate equation and the diffusion function. First,

$$\frac{\text{d}[IPTGO]}{\text{d}t}=0$$

According to the reaction between $IPTGI$ and $pLacR$ and the reaction rate equation, we can get

$$IPTGI+pLacR\rightarrow CC$$

This reaction is similar with the reaction in device A, so we have

$$\frac{\text{d}[IPTGI]}{\text{d}t}=\frac{-\gamma_{IPTG}([IPTGI]-[IPTGO])}{V_{cell}}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{IPTG}[IPTGI]$$

Similarly, we can also get

$$\frac{\text{d}[pLacR]}{\text{d}t}=\alpha_{pLacR}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{pLacR}[pLacR]$$

$$\frac{\text{d}[CC]}{\text{d}t}=-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{CC}[CC]$$

And $pLac$ is a transcription activator of gene $EGFP$, according to hill equation, the concentration of $EGFP$ is

$$\frac{\text{d}[EGFP]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pLacR]^n} -\delta_{EGFP} [EGFP] $$

The concentration of $EGFP$ is the same as the concentration of antibiotics resistance due to the transcription and translation of antibiotic resistance gene combined with the gene of $EGFP$.

$$\frac{\text{d}[EGFP]}{\text{d}t}=\frac{\text{d}[ABR]}{\text{d}t}$$

Where $[EGFP]$ is the concentration of $EGFP$ and $[ABR]$ is the concentration of antibiotic resistance protein expression.

Device C is the same with device B. The only difference is the hairpin between gene of $EGFP$ and gene of $RFP$. Similarly, we can get the function of hairpin and its coefficient.

The first few equations are the same as in device B:

$$\frac{\text{d}[IPTGO]}{\text{d}t}=0$$

$$\frac{\text{d}[IPTGI]}{\text{d}t}=\frac{-\gamma_{IPTG}([IPTGI]-[IPTGO])}{V_{cell}}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{IPTG}[IPTGI]$$

$$\frac{\text{d}[pLacR]}{\text{d}t}=\alpha_{pLacR}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{pLacR}[pLacR]$$

$$\frac{\text{d}[CC]}{\text{d}t}=m_{IPTG,pLacR}[IPTGI][pLacR]-m_{CC}[CC]-\delta_{CC}[CC]$$


$$\frac{\text{d}[EGFP]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pLacR]^n} -\delta_{EGFP} [EGFP]$$

The presence of the hairpin leads to a decrease in $RFP$ expression efficiency, so we have

$$\frac{\text{d}[EGFP]}{\text{d}t}=k\frac{\text{d}[RFP]}{\text{d}t}$$

Where $[RFP]$ is the concentration of red fluorescence protein, $k$ is the coefficient of hairpin.

In device D, $IPTG$ gets in cells and bind with $pLacR$, which is a repressor for gene $DTE$. After $IPTG$ binding with $pLacR$, $DTE$ starts to express, and as an enzyme, to catalysis $fructose$ to turn into $psicose$. As more and more $psicose$ are produced, more and more the repressor of gene $EGFP$, $pLacR$ are inactivated, so expression of $EGPF$ increase. At the same time, expression of $ABR$ also increase since the gene of $ABR$ and the gene of $EGFP$ are connected in series by a hairpin.

For device D, $psicose$ and $fuctose$ get in cells by diffusion:

$$\frac{\text{d}[PsiO]}{\text{d}t}=\frac{-\gamma_{F}([PsiO]-[PsiI])}{V_{outside}}=0 $$

$$\frac{\text{d}[FO]}{\text{d}t}=\frac{-\gamma_{F}([FO]-[FI])}{V_{outside}}=0$$

$$\frac{\text{d}[IPTGO]}{\text{d}t}=\frac{-\gamma_{F}([IPTGO]-[IPTGI])}{V_{outside}}=0$$

And device D consists of device A and device C connected by an extra step:

$$FI\underrightarrow{DTE}PsiI$$

This reaction is an enzyme catalyzed reaction, which can be described by Michaelis equation, so we can get the following equations:


$$\frac{\text{d}[FI]}{\text{d}t}=\frac{-\gamma_{F}([FI]-[FO])}{V_{cell}}-\frac{k_2[DTE][FI]}{K_M+[FI]}-\delta_{FI}[FI]$$

$$\frac{\text{d}[PsiI]}{\text{d}t}=\frac{-\gamma_{F}([PsiI]-[PsiO])}{V_{cell}}+\frac{k_2[DTE][FI]}{K_M+[FI]}-\delta_{PsiI}[PsiI]$$

$$\frac{\text{d}[IPTGI]}{\text{d}t}=\frac{-\gamma_{IPTG}([IPTGI]-[IPTGO])}{V_{cell}}+m_{IPTG,pLacR}[IPTGI][pLacR]-\delta_{IPTG}[IPTGI]$$


Where $k_2$ is reaction rate coefficient of transition state product’s decomposition reaction, $K_M$ is the Michaelis contant.


The rest of the equations are the same with which in device A and device C:

$$\frac{\text{d}[pLacR]}{\text{d}t}=\alpha_{pLacR}-m_{IPTG,pLacR}[IPTGI][pLacR]+m_{CC}[CC]-\delta_{pLacR}[pLacR]$$

$$\frac{\text{d}[pPsiR]}{\text{d}t}=\alpha_{pPsiR}-m_{pPsiR,PsiI}[pPsiR][PsiI]+m_{CCI}[CCI]-\delta_{pLacR}[pLacR]$$

$$\frac{\text{d}[pPsiR]}{\text{d}t}=\alpha_{pPsiR}-m_{pPsiR,Psi}[PsiI][pPsiR]+m_{CCI}[CCI]-\delta_{pPsiR}[pPsiR]$$

$$\frac{\text{d}[CC]}{\text{d} t}=m_{IPTG,pLacR}[PsiI][pPsiR]-m_{CC}[CC]-\delta_{CC}[CC]$$

$$\frac{\text{d}[CCI]}{\text{d} t}=m_{pSiR}[PsiI][pPsiR]-m_{CCI}[CCI]-\delta_{CCI}[CCI]$$

$$\frac{\text{d}[DTE]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pLacR]^n}-\delta_{DTE}[DTE]$$

$$\frac{\text{d}[EGFP]}{\text{d}t}=H\frac{\beta_{EGFP}K^n}{K^n+[pPsiR]^n}-\delta_{EGFP}[EGFP]$$

$$\frac{\text{d}[ABR]}{\text{d}t}=k\frac{\text{d}[EGFP]}{\text{d}t}$$

Basing our model, we can calculate and simulate our system as follows:

From the picture below, it is evident that with time going by, the concentration of IPTG outside the cell will decrease due to the diffusion process, while the RFP expression level is increasing stably.

If we do more experiments shown below, we can find that the expression level of RFP is increasing with the increase of the concentration of IPTG, which proves that we can get a linear range of IPTG to get the RFP expression level. According to device A, B, C, D, this conclusion can also be made, which proves the validation of our kinetic model

Reference

Schmidt F R. Optimization and scale up of industrial fermentation processes.[J]. Appl Microbiol Biotechnol, 2005, 68(4):425-435.
Lin P Y, Whang L M, Wu Y R, et al. Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation[J]. International Journal of Hydrogen Energy, 2007, 32(12):1728-1735.
Whang L M, Hsiao C J, Cheng S S. A dual-substrate steady-state model for biological hydrogen production in an anaerobic hydrogen fermentation process[J]. Biotechnology & Bioengineering, 2010, 95(3):492-500.
Rousu J, Elomaa T, Aarts R. Predicting the speed of beer fermentation in laboratory and industrial scale[J]. 1999, 1607.