Difference between revisions of "Team:Queens Canada/Michaelis-Menten Kinetics"

 
(15 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
{{Queens Canada/Navbar}}
 
{{Queens Canada/Navbar}}
 
<html>
 
<html>
 +
<head>
 +
<script src="https://cdn.rawgit.com/google/code-prettify/master/loader/run_prettify.js?lang=m"></script>
 
<style>
 
<style>
 
body {
 
body {
 
     background-color: white;
 
     background-color: white;
    max-width: 1200px;
 
 
     position: relative;
 
     position: relative;
 
     margin-left: auto;
 
     margin-left: auto;
Line 11: Line 12:
 
}
 
}
 
</style>
 
</style>
 +
</head>
 
<body>
 
<body>
  
<h2>Michaelis-Menten Kinetics</h2>
+
<h2 style="width:70%;margin-left:15%" >Michaelis-Menten Kinetics</h2>
  
<h3>Introduction</h3>
+
<h3 style="width:70%;margin-left:15%">Introduction</h3>
<p>Michaelis - Menten kinetics is a model used to examine enzyme kinetic. The governing equations
+
<p style="width:70%;margin-left:15%;font-size:18px">Michaelis - Menten kinetics is a model used to examine enzyme kinetic. Luciferase's activity can be modeled by Michaelis-Menten kinetics as they perform the simple conversion of a substrate into a product and a photon. Our project relied on the light producing NanoLuc Luciferase as a signal in our devices. We were able to model this relationship with MATLAB. The governing equations
for this model were compiled in the MATLAB, with the goal of creating a calculator. Known
+
for this model were compiled in the MATLAB, with the goal of creating a generic calculator which teams may use in the future. Known
 
values for concentrations and reactions rates are used as inputs, and the file produces the various
 
values for concentrations and reactions rates are used as inputs, and the file produces the various
 
rates of change with respect to the concentrations.</p>
 
rates of change with respect to the concentrations.</p>
  
<h3>Governing Equations</h3>
+
<h3 style="width:70%;margin-left:15%">Governing Equations</h3>
<p>The MATLAB code takes in the substrate concentration, product concentration, and enzyme concentration,
+
<p style="width:70%;margin-left:15%;font-size:18px">The MATLAB code takes in the substrate concentration, product concentration, and enzyme concentration,
 
represented as [S], [P] and [E] respectively. Additionally, known reaction rates for the
 
represented as [S], [P] and [E] respectively. Additionally, known reaction rates for the
 
forward, reverse, and catalytic directions are represented as <em>k<sub>f</sub>, k<sub>r</sub>,</em> and  
 
forward, reverse, and catalytic directions are represented as <em>k<sub>f</sub>, k<sub>r</sub>,</em> and  
Line 28: Line 30:
 
change of concentration with respect to time through the following first order ordinary differential equations:</p>
 
change of concentration with respect to time through the following first order ordinary differential equations:</p>
  
<div>
+
<div style="width:70%;margin-left:15%">
 
<em>d[E]/dt = -k<sub>f</sub>[E][S] + k<sub>r<</sub>[ES] + k<sub>cat</sub>[ES]</em><br>
 
<em>d[E]/dt = -k<sub>f</sub>[E][S] + k<sub>r<</sub>[ES] + k<sub>cat</sub>[ES]</em><br>
 
<em>d[S]/dt = -k<sub>f</sub>[E][S] + k<sub>r<</sub>[ES]</em><br>
 
<em>d[S]/dt = -k<sub>f</sub>[E][S] + k<sub>r<</sub>[ES]</em><br>
Line 40: Line 42:
 
</div>
 
</div>
  
<h3>Use</h3>
+
 
<p>To use the calculator, simply open the MATLAB file and enter the reaction rates and concentration
+
<h3 style="width:70%;margin-left:15%">Application</h3>
 +
<p style="width:70%;margin-left:15%;font-size:18px"> We sought to apply the calculator generated here to model the Kinetics of NanoLuc Luciferase, our choice biosensor reporter. As can be seen from the graph generated by this calculator, and by the actual results obtained. NanoLuc Luciferase activity can be very accurately modeled with this tool, since its activity is substrate dependent, eventually reaching its maximum reaction rate when [S] >> [E].</p>
 +
 
 +
 
 +
<figure style="width:70%;margin-left:15%">
 +
    <img src="https://static.igem.org/mediawiki/2018/9/90/T--Queens_Canada--MichaelisM.png" alt='RMSD0'/>
 +
    <figcaption>Michaelis-Menten Model of Enzyme Kinetics, demonstrating reaction rate is dependent on the concentration of a substrate S.</figcaption>
 +
</figure>
 +
 
 +
<figure style="width:70%;margin-left:10%">
 +
    <img src="https://static.igem.org/mediawiki/2018/f/f9/T--Queens_Canada--NanoTimelapse.jpeg" alt='RMSD0'/>
 +
    <figcaption>NanoLuc Luciferase activity is dependent on substrate concentration. At T=0, an excess of substrate was added. Over the next 10 seconds, the activity of NanoLuc Luciferase increases to a plateau, by converting the substrate Furimazine, into Furimamide, light and CO2</figcaption>
 +
</figure>
 +
 
 +
 
 +
<h3 style="width:70%;margin-left:15%">Use</h3>
 +
<p style="width:70%;margin-left:15%;font-size:18px">To use the calculator, simply open the MATLAB file and enter the reaction rates and concentration
 
in the noted areas. After running the file, the reaction rates will appear in the MATLAB command
 
in the noted areas. After running the file, the reaction rates will appear in the MATLAB command
 
window.</p>
 
window.</p>
  
<h3>References</h3>
+
<h3 style="width:70%;margin-left:15%">References</h3>
<p>Beard, D [Daniel Beard]. (2014, 8 27). Enzyme Kinetics with MATLAB 2 [Video file]. Retrieved
+
<p style="width:70%;margin-left:15%;font-size:18px">Beard, D [Daniel Beard]. (2014, 8 27). Enzyme Kinetics with MATLAB 2 [Video file]. Retrieved
from <a href="https://www.youtube.com/watch?v=g-MApXluAaE&pbjreload=10">https://www.youtube.com/watch?v=g-MApXluAaE&pbjreload=10</a></p>
+
from <a href="https://www.youtube.com/watch?v=g-MApXluAaE&pbjreload=10" target="_blank">https://www.youtube.com/watch?v=g-MApXluAaE&pbjreload=10</a></p>
 +
 
 +
<h3 style="width:70%;margin-left:15%">Matlab Code</h3>
 +
<pre class="prettyprint" style="width:70%;margin-left:15%">
 +
%********READ ME********
 +
 
 +
%The following is a simple Michaelis–Menten rate of change calculator
 +
%The commented out portion of the code is just the governing equations
 +
%Fill in the parameters of dXdT in terms of s,p, and e
 +
%Fill in the reaction rates (all set to 1 by default)
 +
%The output will be the various rates
 +
 
 +
%Governing Equations
 +
 
 +
%E + S <> ES > E + P
 +
%s=[S]; 
 +
%p=[P];
 +
%e=[E];
 +
%c=[ES];
 +
 
 +
%ds/dt = -kForward*e*s + kReverse*c
 +
%dp/dt = kCat*c
 +
%de/dt = -kForward*e*s + kReverse*c + kCat*c
 +
%dc/dt = kForward*e*s - kReverse*c - kCat*c
 +
 
 +
%de/dt + dc/dt = 0
 +
%d(e+c)/dt = 0
 +
 
 +
%E0 = e + c
 +
 
 +
%ds/dt = -kForward*e*s + kReverse*(E0-e)
 +
%dp/dt = kCat*(E0-e)
 +
%de/dt = -kForward*e*s + kReverse*(E0-e) + kCat*(E0-e)
 +
 
 +
s = 1; %Enter substrate concentration
 +
p = 1; %Enter product concentration
 +
e = 1; %Enter enzyme concentration
 +
 
 +
 
 +
 
 +
dXdT([s p e])
 +
 
 +
function [f] = dXdT(x)
 +
 
 +
kForward = 1; %Enter forward reaction rate
 +
kReverse = 1; %Enter reverse reaction rate
 +
kCat = 1;    %Enter catalytic reaction rate
 +
E0 = 1;      %Enter initial concentration
 +
 
 +
s=x(1);
 +
p=x(2);
 +
e=x(3);
 +
 
 +
dsdt = -kForward*e*s + kReverse*(E0-e);
 +
dpdt = kCat*(E0-e);
 +
dedt = -kForward*e*s + kReverse*(E0-e) + kCat*(E0-e);
  
<h3>Matlab Code</h3>
+
f = [dsdt; dpdt; dedt];
 +
end
  
 +
%***Acknowledgments***
  
 +
%Daniel Beard - Enzyme Kinetics with MATLAB 2
 +
</pre>
 +
<footer style="background-color: #212121;height:90px ">
 +
            <div class="container">
 +
                <div class="row">
 +
                    <div class="col-md-4">
 +
                        <ul class="list-inline quicklinks">
 +
                            <li><a href="https://igem.org/Main_Page" style="color:white; font-size:16pt">iGEM Headquarters</a>
 +
                            </li>
 +
                        </ul>
 +
                    </div>
 +
                    <div class="col-md-4">
 +
                        <ul class="list-inline social-buttons" style="margin-left:20%">
 +
                            <li><a href="https://twitter.com/iGEMQueens"style="    display: block;
 +
    background-color: #fff;
 +
    height: 40px;
 +
    width: 40px;
 +
    border-radius: 100%;
 +
    font-size: 20px;
 +
    line-height: 40px;
 +
    color: #000;
 +
    outline: 0;
 +
    -webkit-transition: all .3s;
 +
    -moz-transition: all .3s;
 +
    transition: all .3;"><i class="fa fa-twitter"style="color:black; font-family:FontAwesome;margin-left:10.75px;"></i></a>
 +
                            </li>
 +
                            <li><a href="https://www.facebook.com/iGEMQueens/?fref=ts"style="    display: block;
 +
    background-color: #fff;
 +
    height: 40px;
 +
    width: 40px;
 +
    border-radius: 100%;
 +
    font-size: 20px;
 +
    line-height: 40px;
 +
    color: #000;
 +
    outline: 0;
 +
    -webkit-transition: all .3s;
 +
    -moz-transition: all .3s;
 +
    transition: all .3;"><i class="fa fa-facebook"style="color:black;font-family:FontAwesome;margin-left:10.75px;"></i></a>
 +
                            </li>
 +
                            <li><a href="mailto:director@qgemteam.com" style="    display: block;
 +
    background-color: #fff;
 +
    height: 40px;
 +
    width: 40px;
 +
    border-radius: 100%;
 +
    font-size: 20px;
 +
    line-height: 40px;
 +
    color: #000;
 +
    outline: 0;
 +
    -webkit-transition: all .3s;
 +
    -moz-transition: all .3s;
 +
    transition: all .3;"><i class="fa fa-envelope"style="color:black;font-family:FontAwesome;margin-left:10.75px;"></i></a>
 +
                            </li>
 +
                            <li><a href="https://www.linkedin.com/company/1633448?trk=tyah&amp;trkInfo=clickedVertical%3Acompany%2CclickedEntityId%3A1633448%2Cidx%3A1-1-1%2CtarId%3A1464110668532%2Ctas%3Aqgem" style="    display: block;
 +
    background-color: #fff;
 +
    height: 40px;
 +
    width: 40px;
 +
    border-radius: 100%;
 +
    font-size: 20px;
 +
    line-height: 40px;
 +
    color: #000;
 +
    outline: 0;
 +
    -webkit-transition: all .3s;
 +
    -moz-transition: all .3s;
 +
    transition: all .3;"><i class="fa fa-linkedin"style="color:black; font-family:FontAwesome;margin-left:10.75px;"></i></a>
 +
                            </li>
 +
                        </ul>
 +
                    </div>
 +
                    <div class="col-md-4">
 +
                        <ul class="list-inline quicklinks" style="color: white;font-size:16pt;">
 +
                            <li><a href="http://www.queensu.ca/" style="color:white;margin-left:100px;">Queen's University</a>
 +
                            </li>
 +
                        </ul>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </footer>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 00:13, 16 October 2018

Michaelis-Menten Kinetics

Introduction

Michaelis - Menten kinetics is a model used to examine enzyme kinetic. Luciferase's activity can be modeled by Michaelis-Menten kinetics as they perform the simple conversion of a substrate into a product and a photon. Our project relied on the light producing NanoLuc Luciferase as a signal in our devices. We were able to model this relationship with MATLAB. The governing equations for this model were compiled in the MATLAB, with the goal of creating a generic calculator which teams may use in the future. Known values for concentrations and reactions rates are used as inputs, and the file produces the various rates of change with respect to the concentrations.

Governing Equations

The MATLAB code takes in the substrate concentration, product concentration, and enzyme concentration, represented as [S], [P] and [E] respectively. Additionally, known reaction rates for the forward, reverse, and catalytic directions are represented as kf, kr, and kcat respectively. The preceding values are put into a function which generates the rates of change of concentration with respect to time through the following first order ordinary differential equations:

d[E]/dt = -kf[E][S] + kr<[ES] + kcat[ES]
d[S]/dt = -kf[E][S] + kr<[ES]
d[P]/dt = kcat[ES]

The following substitution is used, where [E0] is the final substrate concentration

[E0]-[E]=[ES]

This yields the formulas used in the function, which are as follows

d[E]/dt = -kf[E][S] + kr<[E0-E] + kcat[E0-E]
d[S]/dt = -kf[E][S] + kr<[E0-E]
d[P]/dt = kcat[E0-E]

Application

We sought to apply the calculator generated here to model the Kinetics of NanoLuc Luciferase, our choice biosensor reporter. As can be seen from the graph generated by this calculator, and by the actual results obtained. NanoLuc Luciferase activity can be very accurately modeled with this tool, since its activity is substrate dependent, eventually reaching its maximum reaction rate when [S] >> [E].

RMSD0
Michaelis-Menten Model of Enzyme Kinetics, demonstrating reaction rate is dependent on the concentration of a substrate S.
RMSD0
NanoLuc Luciferase activity is dependent on substrate concentration. At T=0, an excess of substrate was added. Over the next 10 seconds, the activity of NanoLuc Luciferase increases to a plateau, by converting the substrate Furimazine, into Furimamide, light and CO2

Use

To use the calculator, simply open the MATLAB file and enter the reaction rates and concentration in the noted areas. After running the file, the reaction rates will appear in the MATLAB command window.

References

Beard, D [Daniel Beard]. (2014, 8 27). Enzyme Kinetics with MATLAB 2 [Video file]. Retrieved from https://www.youtube.com/watch?v=g-MApXluAaE&pbjreload=10

Matlab Code

%********READ ME********

%The following is a simple Michaelis–Menten rate of change calculator
%The commented out portion of the code is just the governing equations
%Fill in the parameters of dXdT in terms of s,p, and e
%Fill in the reaction rates (all set to 1 by default)
%The output will be the various rates

%Governing Equations

%E + S <> ES > E + P
%s=[S];  
%p=[P];
%e=[E];
%c=[ES];

%ds/dt = -kForward*e*s + kReverse*c
%dp/dt = kCat*c
%de/dt = -kForward*e*s + kReverse*c + kCat*c
%dc/dt = kForward*e*s - kReverse*c - kCat*c

%de/dt + dc/dt = 0
%d(e+c)/dt = 0

%E0 = e + c

%ds/dt = -kForward*e*s + kReverse*(E0-e)
%dp/dt = kCat*(E0-e)
%de/dt = -kForward*e*s + kReverse*(E0-e) + kCat*(E0-e)

s = 1; %Enter substrate concentration
p = 1; %Enter product concentration
e = 1; %Enter enzyme concentration



dXdT([s p e])

function [f] = dXdT(x)

kForward = 1; %Enter forward reaction rate
kReverse = 1; %Enter reverse reaction rate
kCat = 1;     %Enter catalytic reaction rate
E0 = 1;       %Enter initial concentration

s=x(1);
p=x(2);
e=x(3);

dsdt = -kForward*e*s + kReverse*(E0-e);
dpdt = kCat*(E0-e);
dedt = -kForward*e*s + kReverse*(E0-e) + kCat*(E0-e);

f = [dsdt; dpdt; dedt];
end

%***Acknowledgments***

%Daniel Beard - Enzyme Kinetics with MATLAB 2