Difference between revisions of "Team:BIT-China/Background"

Line 35: Line 35:
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&amp;ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&amp;ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/project-common-style?action=raw&amp;ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/project-common-style?action=raw&amp;ctype=text/css">
    <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/Tooltip?action=raw&amp;ctype=text/css">
 
 
     <script src="https://2018.igem.org/Template:BIT-China/js/base-loading?action=raw&ctype=text/javascript"></script>
 
     <script src="https://2018.igem.org/Template:BIT-China/js/base-loading?action=raw&ctype=text/javascript"></script>
 +
 
</head>
 
</head>
  
Line 115: Line 115:
 
     </ul>
 
     </ul>
  
     <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a>
+
     <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png " /></a>
 
     <!-- end -->
 
     <!-- end -->
  
 
     <div class="PRO-white-head"></div>
 
     <div class="PRO-white-head"></div>
 
    <img class="PRO-BG" src="https://static.igem.org/mediawiki/2018/7/74/T--BIT-China--iGEM2018-project-bg.png">
 
  
 
     <div class="PRO-title">
 
     <div class="PRO-title">
         <a class="PRO-title-1" style="border-bottom: 3px solid #E6E6E6;color: #E6E6E6;">BACKGROUND</a>
+
         <a class="PRO-title-1" style="border-bottom: 3px solid #E6E6E6;color: #E6E6E6;">DESCRIPTION</a>
 
     </div>
 
     </div>
  
     <div id="PRO-content-all" class="content_container" style="margin-top:25vh;">
+
     <img class="PRO-BG" src="https://static.igem.org/mediawiki/2018/7/74/T--BIT-China--iGEM2018-project-bg.png">
  
         <div id="PRO1" class="cd-section PRO-margin-Title2Up">
+
    <div id="PRO-content-all" class="content_container" style="margin-top:20px;">
 +
         <div id="PRO1" class="cd-section">
 
             <div class="PRO-title-2">
 
             <div class="PRO-title-2">
                 <a style="text-decoration:none;color:#131313;">What is ROS?</a>
+
                 <a style="text-decoration:none;color:#131313;">Overview</a>
            </div>
+
 
+
            <div class="PRO-content-all">
+
                <div class="PRO-content">
+
 
+
                    <figure class="PRO-Fig PRO-margin-toContentP">
+
                        <img src="https://static.igem.org/mediawiki/2018/6/63/T--BIT-China--iGEM2018-Projectbackgroundfig1.jpg">
+
                        <figcaption><b>Fig. 1</b> Reactive oxygen species (ROS)</figcaption>
+
                    </figure>
+
 
+
                    <p class="PRO-content-p PRO-margin-toContentP">
+
                        Reactive oxygen species (ROS) refers to substances that have strong oxidative properties in
+
                        living organisms. ROS are mainly divided into four categories: hydrogen peroxide(H<sub>2</sub>O<sub>2</sub>),
+
                        superoxide anion(O<sub>2</sub><sup>-</sup>), hydroxyl radicals(OH<sup>-</sup>), and single-line
+
                        oxygen(<sup>1</sup>[O<sub>2</sub>]).
+
                        <sup onmouseover="tooltip.pop(this, '#tip-1', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[1]</sup>
+
                    </p>
+
 
+
                </div>
+
            </div>
+
        </div>
+
 
+
 
+
        <div id="PRO2" class="cd-section">
+
            <div class="PRO-title-2 PRO-margin-Title2Up">
+
                <a style="text-decoration:none;color:#131313;">The harm of the ROS</a>
+
 
             </div>
 
             </div>
  
 
             <div class="PRO-content-all PRO-margin-toTitle2">
 
             <div class="PRO-content-all PRO-margin-toTitle2">
 
                 <div class="PRO-content">
 
                 <div class="PRO-content">
                    <figure class="PRO-Fig PRO-margin-toContentP">
+
                     <p class="PRO-content-p">
                        <img src="https://static.igem.org/mediawiki/2018/9/90/T--BIT-China--iGEM2018-Projectbackgroundfig2.jpg">
+
                         To achieve our goal of detecting the antioxidants capacity of different products in living
                        <figcaption><b>Fig. 2</b> ROS can cause oxidative damage</figcaption>
+
                         cells, it our system can be divided into three parts, regulator, feedback and output.
                    </figure>
+
                     <p class="PRO-content-p PRO-margin-toContentP">
+
                         The overproduction of ROS in body organisms could lead to the damage to nucleic acids, lipids
+
                         and proteins, impede normal cellular metabolism, worse more, those oxidized substances can
+
                        attack bodies too. The accumulation of oxidative damage will eventually induce kinds of
+
                        diseases, such as aging, initiate cancer, arteriosclerosis and heart disease.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-2', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[2]</sup>
+
 
                     </p>
 
                     </p>
 
                 </div>
 
                 </div>
Line 178: Line 142:
 
         </div>
 
         </div>
  
         <div id="PRO3" class="cd-section PRO-margin-Title2Up">
+
         <div id="PRO2" class="cd-section PRO-margin-Title2Up">
 
             <div class="PRO-title-2">
 
             <div class="PRO-title-2">
                 <a style="text-decoration:none;color:#131313;">What are antioxidants?</a>
+
                 <a style="text-decoration:none;color:#131313;">Regulator</a>
 
             </div>
 
             </div>
  
 
             <div class="PRO-content-all">
 
             <div class="PRO-content-all">
 
                 <div class="PRO-content">
 
                 <div class="PRO-content">
                     <figure class="PRO-Fig PRO-margin-toTitle2">
+
                     <p class="PRO-content-p PRO-margin-toTitle2">
                         <img src="https://static.igem.org/mediawiki/2018/2/26/T--BIT-China--iGEM2018-Projectbackgroundfig3.jpg">
+
                         Firstly, we choose to increase the intracellular ROS content, considering that:
                         <figcaption><b>Fig. 3</b> Glutathione, one of Antioxidants</figcaption>
+
                    </p>
                     </figure>
+
 
 +
                    <ul class="PRO-content-p PRO-margin-toContentP">
 +
                         <li>
 +
                            ● The level of ROS in normal cells is low and hard to detection.
 +
                        </li>
 +
                        <li>
 +
                            ● Make the cell under oxidative stress to simulate the normal cellular oxidative process
 +
                            or, rather, the aging process.
 +
                        </li>
 +
                        <li>
 +
                            ● The most intuitive effect of antioxidants is their reduction of intracellular ROS
 +
                            content. We can evaluate antioxidants indirectly through the remaining amount of ROS.
 +
                        </li>
 +
                        <li>
 +
                            ● After reviewing most cell-based antioxidant detection methods recorded in literature, we
 +
                            discover that almost all protocols will induce cell in an oxidant stress firstly.
 +
                        </li>
 +
                     </ul>
  
 
                     <p class="PRO-content-p PRO-margin-toContentP">
 
                     <p class="PRO-content-p PRO-margin-toContentP">
                         Antioxidants are compounds that inhibit oxidation.
+
                         Therefore, we established this part to do such kind of thing. Meanwhile, we hope the way to
 +
                        stimulate the accumulation of ROS is easy and equipment-independent, which makes our system
 +
                        more available for customers.
 
                     </p>
 
                     </p>
 
 
                     <p class="PRO-content-p PRO-margin-toContentP">
 
                     <p class="PRO-content-p PRO-margin-toContentP">
                         Antioxidants can scavenge the excess ROS in the organisms. The antioxidants mentioned here is
+
                         However, higher oxidative stress is always accompanied by lower survival rate, in hence we also
                         not antioxidants for food preservation, nor reductants, but working in organisms.
+
                         need to do something to make our host cell more robust and prevent cells from dying for
                         <sup onmouseover="tooltip.pop(this, '#tip-3', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                         oxidation.
                            style="color:#38679a;">[3]</sup>
+
 
                     </p>
 
                     </p>
 
                 </div>
 
                 </div>
Line 204: Line 185:
 
         </div>
 
         </div>
  
         <div id="PRO4" class="cd-section PRO-margin-Title2Up">
+
         <div id="PRO2" class="cd-section PRO-margin-Title2Up">
 
             <div class="PRO-title-2">
 
             <div class="PRO-title-2">
                 <a style="text-decoration:none;color:#131313;">The classification of antioxidants</a>
+
                 <a style="text-decoration:none;color:#131313;">Feedback</a>
 
             </div>
 
             </div>
  
Line 212: Line 193:
 
                 <div class="PRO-content">
 
                 <div class="PRO-content">
 
                     <p class="PRO-content-p PRO-margin-toTitle2">
 
                     <p class="PRO-content-p PRO-margin-toTitle2">
                         To better study the performance of antioxidants in the market, we divide them into two
+
                         After increasing the concentration of ROS in cell, there's still somethings we need to
                        categories: direct antioxidants and indirect antioxidants, according to the mechanism of
+
                         consider:
                         antioxidant action. Direct antioxidants exert antioxidant effects by redox reaction to
+
                        scavenging or inhibiting free radicals, such as vitamin C, vitamins E and proanthocyanidins.
+
                        And indirect antioxidants achieve antioxidant activity by regulating gene expression and
+
                        intracellular metabolism in cell endogenous antioxidant system, such as the natural
+
                        antioxidants oleuropein, <sup onmouseover="tooltip.pop(this, '#tip-4', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[4]</sup>quercetin, and the synthetic antioxidant probucol. The
+
                        antioxidants that are commonly found in cosmetics and health products on the market today are
+
                        vitamin C, vitamin E, tea polyphenols, etc.
+
 
                     </p>
 
                     </p>
                </div>
 
            </div>
 
        </div>
 
  
        <div id="PRO5" class="cd-section">
+
                    <ul class="PRO-content-p PRO-margin-toContentP">
            <div class="PRO-title-2 PRO-margin-Title2Up">
+
                        <li>
                <a style="text-decoration:none;color:#131313;">The prospect in the field of antioxidants and detection</a>
+
                            ● The high level of ROS will damage the cells and even lead to cells death.
            </div>
+
                        </li>
 
+
                        <li>
            <div class="PRO-content-all">
+
                            ● Low survival rate under high oxidant state may affect the signal output of our system,
                <div class="PRO-content">
+
                            making our results not convincing;
                    <p class="PRO-content-p PRO-margin-toTitle2">
+
                        </li>
                        In recent years, with the improvement of people's living standards and the aging of the
+
                        <li>
                        population, health, anti-oxidant and anti-aging have attracted people's attention more and
+
                            ● It's hard to control the ROS accumulation in every assay, which means our test may be
                        become hotspots. According to statistics, the scale of China's medical and health industry has
+
                            NON-repeatable.
                        increased from 1.6 trillion yuan in 2009 to 5.6 trillion yuan in 2016. And it is estimated that
+
                         </li>
                        by 2020, the total size of China's medical and health industry will exceed 8 trillion yuan.
+
                     </ul>
                         <sup onmouseover="tooltip.pop(this, '#tip-5', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[5]</sup>
+
                     </p>
+
  
 
                     <p class="PRO-content-p PRO-margin-toContentP">
 
                     <p class="PRO-content-p PRO-margin-toContentP">
                         Because of the functions of anti-oxidant, anti-aging, anti-tumor, anti-inflammatory, vascular
+
                         Based on these reasons, we need to add an feedback system to control the concentration of ROS
                        activation and the capacity of scavenging the excess ROS in the organisms, antioxidants have a
+
                         in vivo, make it higher than normal level, lower than death level to maintain cell viability
                         remarkable prospect in the fields of pharmaceuticals, health products and cosmetics.
+
                         and last, steady for test. We solve this problem by adding an ROS sensor, which has a suitable
                        <sup onmouseover="tooltip.pop(this, '#tip-6', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                         sensing threshold so that it can maintain the balancing between the high level of ROS in living
                            style="color:#38679a;">[6]</sup>
+
                         cell and survival rate of cells.
                    </p>
+
 
+
                    <p class="PRO-content-p PRO-margin-toContentP">
+
                         Through literature review and data collection, we learned that the current antioxidant testing
+
                        methods on the market are not good enough, which means, there is no standard method for us to
+
                        judge the effects of antioxidants. So we want to establish a convenient and efficient standard
+
                         and detection method for evaluate antioxidants. Additionally, how to accurately evaluate the
+
                        activity of antioxidants is also a hot topic in the field of antioxidants research.
+
                         <sup onmouseover="tooltip.pop(this, '#tip-7', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[7]</sup>
+
                        Besides, the public resist synthetic antioxidants and inclined to choose natural antioxidants.
+
                        <a href="https://2018.igem.org/Team:BIT-China/HPOverview" target="_Blank" style="color:#131313;">Check
+
                            here</a> to know what people want for antioxidants detection.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-8', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[8]</sup>
+
                        The most amazing thing is that countless excellent natural antioxidants are hidden in nature.
+
                        We just need a key of antioxidants detection method to open the huge treasure house of nature.
+
 
                     </p>
 
                     </p>
 
                 </div>
 
                 </div>
Line 272: Line 222:
 
         </div>
 
         </div>
  
         <div id="PRO6" class="cd-section PRO-margin-Title2Up">
+
         <div id="PRO2" class="cd-section PRO-margin-Title2Up">
            <p class="PRO-content-p PRO-margin-toContentP">
+
             <div class="PRO-title-2">
                Here showed the current detecting methods that we collected in the market:
+
                 <a style="text-decoration:none;color:#131313;">Output</a>
            </p>
+
 
+
             <div class="PRO-title-2 PRO-margin-toContentP">
+
                 <a style="text-decoration:none;color:#131313;">The existing methods of detecting antioxidants:</a>
+
 
             </div>
 
             </div>
  
 
             <div class="PRO-content-all">
 
             <div class="PRO-content-all">
                <div class="PRO-title-3 PRO-margin-Title3Up">
 
                    <a style="text-decoration:none;color:#131313;">Human studies and animal models</a>
 
                </div>
 
 
 
                 <div class="PRO-content">
 
                 <div class="PRO-content">
                     <figure class="PRO-Fig PRO-margin-toContentP">
+
                     <p class="PRO-content-p PRO-margin-toTitle2">
                         <img src="https://static.igem.org/mediawiki/2018/5/55/T--BIT-China--iGEM2018-Projectbackgroundfig4.jpg">
+
                         Last but not least, the part of characterizing residual amount of intracellular ROS.
                        <figcaption><b>Fig. 4</b> Detecting methods based on human/animal cells</figcaption>
+
                     </p>
                     </figure>
+
 
+
 
                     <p class="PRO-content-p PRO-margin-toContentP">
 
                     <p class="PRO-content-p PRO-margin-toContentP">
                         In these existing assays for detection of antioxidants, human studies and animal models could
+
                         Different from chemical detecting methods, our signal output substance must be:
                        give us the most truthful and reliable measurement results could. However, these are expensive
+
                        and time-consuming and not available for initial screening antioxidants.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-9', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[9]</sup>
+
 
                     </p>
 
                     </p>
  
                </div>
+
                    <ul class="PRO-content-p PRO-margin-toContentP">
 +
                        <li>
 +
                            ● simpler for users to detect;
 +
                        </li>
 +
                        <li>
 +
                            ● harmless to cells;
 +
                        </li>
 +
                        <li>
 +
                            ● accurate and sensitive enough to reflect the intracellular ROS content;
 +
                        </li>
 +
                        <li>
 +
                            ● Reversible so we can get real-time data.
 +
                        </li>
 +
                    </ul>
  
                <div class="PRO-title-3 PRO-margin-Title3Up">
+
                     <p class="PRO-content-p PRO-margin-toContentP">
                     <a style="text-decoration:none;color:#131313;">Chemistry methods</a>
+
                         To meet those needs, chemical redox probe has been out of our consideration, even though they
                </div>
+
                         have characteristic of extreme-high sensitivity, still they are irreversibility and unstable.
 
+
                         We prefer a kind of characterization which can exist in living cell also in a consist level for
                <div class="PRO-content">
+
                         stable measurement.
                    <figure class="PRO-Fig PRO-margin-toContentP">
+
                         <img src="https://static.igem.org/mediawiki/2018/c/c8/T--BIT-China--iGEM2018-Projectbackgroundfig5.jpg">
+
                        <figcaption><b>Fig. 5</b> Chemistry methods</figcaption>
+
                    </figure>
+
 
+
                    <p class="PRO-content-p">
+
                        Chemistry methods were widely-used, including oxygen radical absorbance capacity (ORAC)
+
                        <sup onmouseover="tooltip.pop(this, '#tip-10', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[10]</sup>
+
                        , total radical-trapping antioxidant parameter (TRAP)
+
                        <sup onmouseover="tooltip.pop(this, '#tip-11', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[11]</sup>
+
                        , Trolox equivalent antioxidant capacity (TEAC)
+
                        <sup onmouseover="tooltip.pop(this, '#tip-12', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[12]</sup>
+
                        , total oxyradical scavenge capacity (TOSC)
+
                        <sup onmouseover="tooltip.pop(this, '#tip-13', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[13]</sup>
+
                        , the peroxyl scavenging capacity (PSC)
+
                        <sup onmouseover="tooltip.pop(this, '#tip-14', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[14]</sup>
+
                        , the ferric reducing/antioxidant power assay (FRAP)
+
                        <sup onmouseover="tooltip.pop(this, '#tip-15', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[15]</sup>
+
                        , and the DPPH free radical method
+
                        <sup onmouseover="tooltip.pop(this, '#tip-16', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[16]</sup>
+
                        . Although these chemistry methods are currently widely-use, their main measurement principle
+
                        is to characterize the reducibility of antioxidants by virous artificially synthesized
+
                        exogenous free radical occurring redox reactions with the antioxidants. As a result, chemistry
+
                        methods have the shortcoming of low biological relevance, their detecting conditions are almost
+
                        different from the physiological environment of cell living in, and these assays can’t evaluate
+
                        the effects of antioxidants in the complicated metabolic process. That means, chemical methods
+
                        are unable tot evaluate indirect antioxidants properly.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-17', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[17]</sup><sup onmouseover="tooltip.pop(this, '#tip-18', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[18]</sup>
+
                        Therefore, the authenticity of the experimental results of chemistry methods is questioned.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-19', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[19]</sup>
+
                        For example, USDA's Nutrient Data Laboratory (NDL) removed the USDA ORAC Database for Selected
+
                        Foods from the NDL website in 2012, because of the poor authenticity and low credibility of the
+
                        chemistry methods.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-20', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[20]</sup>
+
 
+
                    </p>
+
 
+
                </div>
+
 
+
                <div class="PRO-title-3 PRO-margin-Title3Up">
+
                    <a style="text-decoration:none;color:#131313;">Cell-based assays</a>
+
                </div>
+
 
+
                <div class="PRO-content">
+
                    <p class="PRO-content-p">
+
                        Compared to human studies and animal models, our program has shorter cycles, lower costs and
+
                        lower detection difficulty. Compared to chemistry methods, our project is compatible with
+
                        complex metabolic processes in cells, and biological relevance and data reliability have been
+
                        greatly improved. In addition, our project can also detect the indirect antioxidants that can’t
+
                        be evaluate by chemistry methods, such as antioxidants that functions by stimulating the
+
                         endogenous antioxidant system in cells, which have not antioxidant capacity without cells.
+
                    </p>
+
 
+
                    <p class="PRO-content-p">
+
                        Cell-based methods for evaluating antioxidants are a novel field. Cell-based antioxidants
+
                        detection methods that people have developed can be roughly divided into three types. The first
+
                        type is the CAA assay and MTT assay developed from the traditional chemistry methods. The
+
                        second type is the cell-based electrochemical method evolved from the traditional
+
                        electrochemical methods. The third type is the engineered cells that we use to synthesize
+
                        biology. The third one utilize the engineering cells transformed by synthetic biological
+
                        methods, which can detect and evaluate the antioxidants.
+
                    </p>
+
 
+
                </div>
+
 
+
                <div class="PRO-title-3 PRO-margin-Title3Up">
+
                    <a style="text-decoration:none;color:#131313;">CAA assay</a>
+
                </div>
+
 
+
                <div class="PRO-content">
+
                    <figure class="PRO-Fig PRO-margin-toContentP">
+
                        <img src="https://static.igem.org/mediawiki/2018/7/70/T--BIT-China--iGEM2018-Projectbackgroundfig6.jpg">
+
                        <figcaption><b>Fig. 6</b> CAA assay</figcaption>
+
                    </figure>
+
 
+
                    <p class="PRO-content-p">
+
                        CAA assay
+
                        <sup onmouseover="tooltip.pop(this, '#tip-21', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[21]</sup>
+
                        is cell-based assay, but it still doesn’t break through the limitations of traditional
+
                        chemistry methods. Firstly, it still produces free radicals using artificial synthetic
+
                        materials used in traditional chemistry methods, such as ABAP (Azo compound) which are
+
                        criticized for cells.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-22', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[22]</sup>
+
 
+
                    </p>
+
 
+
                    <p class="PRO-content-p">
+
                        Secondly, the CAA assay uses an artificial synthetic fluorescent probe DCFH-DA, which is widely
+
                        used to detect ROS currently, but the authenticity of the data obtained by this probe is
+
                        questioned.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-23', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[23]</sup>
+
                    </p>
+
 
+
                </div>
+
 
+
                <div class="PRO-title-3 PRO-margin-Title3Up">
+
                    <a style="text-decoration:none;color:#131313;">MTT assay</a>
+
                </div>
+
 
+
                <div class="PRO-content">
+
                    <figure class="PRO-Fig PRO-margin-toContentP">
+
                        <img src="https://static.igem.org/mediawiki/2018/f/f3/T--BIT-China--iGEM2018-Projectbackgroundfig7.jpg">
+
                        <figcaption><b>Fig. 7</b> MTT assay</figcaption>
+
                    </figure>
+
 
+
                    <p class="PRO-content-p">
+
                        MTT assay
+
                        <sup onmouseover="tooltip.pop(this, '#tip-24', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[24]</sup><sup onmouseover="tooltip.pop(this, '#tip-25', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[25]</sup>
+
                        breaks through the defect that the traditional chemical method can only detect single free
+
                        radical, and the cell survival rate is used as the standard to characterize the antioxidant
+
                        activity. However, the evaluation of MTT assay is not very good, because its detection
+
                         condition is too critical for the cell and the cell survival pressure is very high.
+
                        <sup onmouseover="tooltip.pop(this, '#tip-26', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[26]</sup>
+
 
+
                    </p>
+
                </div>
+
 
+
                <div class="PRO-title-3 PRO-margin-Title3Up">
+
                    <a style="text-decoration:none;color:#131313;">Cell-based electrochemical assay</a>
+
                </div>
+
 
+
                <div class="PRO-content">
+
                    <figure class="PRO-Fig PRO-margin-toContentP">
+
                        <img src="https://static.igem.org/mediawiki/2018/f/f2/T--BIT-China--iGEM2018-Projectbackgroundfig8.png">
+
                        <figcaption><b>Fig. 8</b> Cell-based electrochemical detection method</figcaption>
+
                    </figure>
+
 
+
                    <p class="PRO-content-p">
+
                        Cell-based electrochemical detection method,
+
                        <sup onmouseover="tooltip.pop(this, '#tip-27', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})"
+
                            style="color:#38679a;">[27]</sup>
+
                        which is based on the traditional electrochemistry and the bio-electrochemical probe. This kind
+
                        of method has high sensitivity and can realize real-time monitoring which is its unique
+
                        feature. But the high cost and critical requirement of equipment limits this method used
+
                        widely.
+
                    </p>
+
 
+
                    <figure class="PRO-Fig PRO-margin-toContentP">
+
                        <img src="https://static.igem.org/mediawiki/2018/6/66/T--BIT-China--iGEM2018-Projectbackgroundfig9.jpg">
+
                        <figcaption><b>Fig. 9</b> summary (advantages& disadvantages)</figcaption>
+
                    </figure>
+
                </div>
+
            </div>
+
        </div>
+
 
+
        <div id="PRO7" class="cd-section">
+
            <div class="PRO-title-2">
+
                <a style="text-decoration:none;color:#131313;">What are we going to do?</a>
+
            </div>
+
            <div class="PRO-content-all">
+
                <div class="PRO-content">
+
                    <p class="PRO-content-p">
+
                        Based on the problems mentioned above, we want to screen excellent antioxidants to help us
+
                        scavenge ROS against aging and diseases. Our goal is to build a system with function of
+
                        detecting the antioxidants and has the advantages of high biological relevance, simple
+
                        operation, low-cost, good reproducibility, accuracy, and high sensitivity for antioxidant
+
                         detection. More importantly, we hope to establish an efficient standard for evaluating
+
                        antioxidants through our system.
+
 
                     </p>
 
                     </p>
 
                 </div>
 
                 </div>
Line 515: Line 289:
 
     </div>
 
     </div>
 
     <!-- end -->
 
     <!-- end -->
 
    <div style="display:none;font-family: 'helveticaregular';">
 
        <div id="tip-1">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Qiang Ma. Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol. 2013; 53:
 
                    401–426.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-2">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Liu R H, Finley J. Potential cell culture models for antioxidant research[J]. Journal of
 
                    agricultural and food chemistry, 2005, 53(10): 4311-4314.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-3">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>https://en.wikipedia.org/wiki/Antioxidant
 
                </a>
 
            </div>
 
        </div>
 
 
 
        <div id="tip-4">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Ce Shi, Xiangrong Chen, Zuojia Liu, Rizeng Meng, Xingchen Zhao, Zonghui Liu, Na Guo . Oleuropein
 
                    protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT
 
                    expression [J]. Biomedicine & Pharmacotherapy 85 (2017) 740–748
 
                </a>
 
            </div>
 
        </div>
 
 
 
        <div id="tip-5">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>http://www.sohu.com/a/224972720_100018121
 
                </a>
 
            </div>
 
        </div>
 
 
 
        <div id="tip-6">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell
 
                    culture: how should you do it and what do the results mean?[J]. British journal of pharmacology,
 
                    2004, 142(2): 231-255.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-7">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants[J].
 
                    Free Radical Research, 2015, 49(5):633-49.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-8">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Wolfe K L, Liu R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and
 
                    dietary supplements. [J]. Journal of Agricultural & Food Chemistry, 2007, 55(22):8896.
 
                </a>
 
            </div>
 
        </div>
 
 
 
        <div id="tip-9">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Cao G, Alessio H M, Cutler R G. Oxygen-radical absorbance capacity assays for antioxidants. Free Rad
 
                    Biol Med 1:303-311[J]. Free Radical Biology & Medicine, 1993, 14(3):303-311.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-10">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Andrea Ghiselli, Mauro Serafini, Giuseppe Maiani, et al. A fluorescence-based method for measuring
 
                    total plasma antioxidant capability[J]. Free Radical Biology and Medicine, 1995, 18(1):29-36.
 
                </a>
 
            </div>
 
        </div>
 
 
 
        <div id="tip-11">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Miller N J, Rice-Evans C, Davies M J, et al. A novel method for measuring antioxidant capacity and
 
                    its application to monitoring the antioxidant status in premature neonates[J]. Clinical Science,
 
                    1993, 84(4):407-412.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-12">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Winston G W, Regoli F, Dugas Jr A J, et al. A rapid gas chromatographic assay for determining
 
                    oxyradical scavenging capacity of antioxidants and biological fluids[J]. Free Radical Biology and
 
                    Medicine, 1998, 24(3): 480-493.
 
                </a>
 
            </div>
 
        </div>
 
 
 
        <div id="tip-13">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Adom K K, Liu R H. Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both
 
                    hydrophilic and lipophilic antioxidants[J]. Journal of Agricultural & Food Chemistry, 2005,
 
                    53(17):6572.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-14">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Benzie IF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant
 
                    Power”: The FRAP Assay[J]. Analytical Biochemistry, 1996, 239(1):70-6.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-15">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>W. Brand-Williams, M.E. Cuvelier, C. Berset. Use of a free radical method to evaluate antioxidant
 
                    activity[J]. Lwt-Food Science and Technology, 1995, 28(1):25-30.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-16">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Liu R H, Finley J. Potential cell culture models for antioxidant research.[J]. Journal of
 
                    Agricultural & Food Chemistry, 2005, 53(10):4311.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-17">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Cheli F, Baldi A. Nutrition‐Based Health: Cell‐Based Bioassays for Food Antioxidant Activity
 
                    Evaluation[J]. Journal of Food Science, 2011, 76(9): R197-R205.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-18">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants[J].
 
                    Free Radical Research, 2015, 49(5):633-49.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-19">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Dickinson B C, Chang C J. Chemistry and biology of reactive oxygen species in signaling or stress
 
                    responses[J]. Nature Chemical Biology, 2011, 7(8):504-11.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-20">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/oxygen-radical-absorbance-capacity-orac-of-selected-foods-release-2-2010/
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-21">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Wolfe K L, Liu R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and
 
                    dietary supplements. [J]. Journal of Agricultural & Food Chemistry, 2007, 55(22):8896.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-22">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Frankel E N, Meyer A S. The problems of using one‐dimensional methods to evaluate multifunctional
 
                    food and biological antioxidants[J]. Journal of the Science of Food and Agriculture, 2000, 80(13):
 
                    1925-1941.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-23">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Bonini M G, Rota C, Tomasi A, et al. The oxidation of 2′, 7′-dichlorofluorescin to reactive oxygen
 
                    species: a self-fulfilling prophesy?[J]. Free Radical Biology and Medicine, 2006, 40(6): 968-975.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-24">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Papi A, Orlandi M, Bartolini G, et al. Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl
 
                    isothiocyanate from Raphanus sativus L.(Kaiware Daikon) sprouts[J]. Journal of agricultural and
 
                    food chemistry, 2008, 56(3): 875-883.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-25">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>毛绍春, 李竹英, 李聪. 生物-光度法检测抗氧化剂抗氧化活性[J]. 分析试验室, 2008, 27(4):36-39.
 
                </a>
 
            </div>
 
        </div>
 
 
        <div id="tip-26">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants. [J].
 
                    Free Radical Research, 2015, 49(5):633-49.
 
                </a>
 
            </div>
 
        </div>
 
 
 
        <div id="tip-27">
 
            <div class="column" style="width:230px;height: 100px;">
 
                <a>Ge Q, Ge P, Jiang D, et al. A novel and simple cell-based electrochemical biosensor for evaluating
 
                    the antioxidant capacity of Lactobacillus plantarum strains isolated from Chinese dry-cured ham[J].
 
                    Biosensors and Bioelectronics, 2018, 99: 555-563.
 
                </a>
 
            </div>
 
        </div>
 
    </div>
 
  
 
     <script src="https://2018.igem.org/Template:BIT-China/js/jquery-min?action=raw&ctype=text/javascript"></script>
 
     <script src="https://2018.igem.org/Template:BIT-China/js/jquery-min?action=raw&ctype=text/javascript"></script>
Line 753: Line 298:
 
         })
 
         })
 
     </script>
 
     </script>
    <script src="https://2018.igem.org/Template:BIT-China/js/Tooltip?action=raw&ctype=text/javascript"></script>
 
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 20:34, 16 October 2018

To achieve our goal of detecting the antioxidants capacity of different products in living cells, it our system can be divided into three parts, regulator, feedback and output.

Firstly, we choose to increase the intracellular ROS content, considering that:

  • ● The level of ROS in normal cells is low and hard to detection.
  • ● Make the cell under oxidative stress to simulate the normal cellular oxidative process or, rather, the aging process.
  • ● The most intuitive effect of antioxidants is their reduction of intracellular ROS content. We can evaluate antioxidants indirectly through the remaining amount of ROS.
  • ● After reviewing most cell-based antioxidant detection methods recorded in literature, we discover that almost all protocols will induce cell in an oxidant stress firstly.

Therefore, we established this part to do such kind of thing. Meanwhile, we hope the way to stimulate the accumulation of ROS is easy and equipment-independent, which makes our system more available for customers.

However, higher oxidative stress is always accompanied by lower survival rate, in hence we also need to do something to make our host cell more robust and prevent cells from dying for oxidation.

After increasing the concentration of ROS in cell, there's still somethings we need to consider:

  • ● The high level of ROS will damage the cells and even lead to cells death.
  • ● Low survival rate under high oxidant state may affect the signal output of our system, making our results not convincing;
  • ● It's hard to control the ROS accumulation in every assay, which means our test may be NON-repeatable.

Based on these reasons, we need to add an feedback system to control the concentration of ROS in vivo, make it higher than normal level, lower than death level to maintain cell viability and last, steady for test. We solve this problem by adding an ROS sensor, which has a suitable sensing threshold so that it can maintain the balancing between the high level of ROS in living cell and survival rate of cells.

Last but not least, the part of characterizing residual amount of intracellular ROS.

Different from chemical detecting methods, our signal output substance must be:

  • ● simpler for users to detect;
  • ● harmless to cells;
  • ● accurate and sensitive enough to reflect the intracellular ROS content;
  • ● Reversible so we can get real-time data.

To meet those needs, chemical redox probe has been out of our consideration, even though they have characteristic of extreme-high sensitivity, still they are irreversibility and unstable. We prefer a kind of characterization which can exist in living cell also in a consist level for stable measurement.