Line 35: | Line 35: | ||
<link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&ctype=text/css"> | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&ctype=text/css"> | ||
<link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/project-common-style?action=raw&ctype=text/css"> | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/project-common-style?action=raw&ctype=text/css"> | ||
+ | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/Tooltip?action=raw&ctype=text/css"> | ||
<script src="https://2018.igem.org/Template:BIT-China/js/base-loading?action=raw&ctype=text/javascript"></script> | <script src="https://2018.igem.org/Template:BIT-China/js/base-loading?action=raw&ctype=text/javascript"></script> | ||
− | |||
</head> | </head> | ||
Line 115: | Line 115: | ||
</ul> | </ul> | ||
− | <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png " /></a> | + | <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a> |
<!-- end --> | <!-- end --> | ||
<div class="PRO-white-head"></div> | <div class="PRO-white-head"></div> | ||
+ | |||
+ | <img class="PRO-BG" src="https://static.igem.org/mediawiki/2018/7/74/T--BIT-China--iGEM2018-project-bg.png"> | ||
<div class="PRO-title"> | <div class="PRO-title"> | ||
− | <a class="PRO-title-1" style="border-bottom: 3px solid #E6E6E6;color: #E6E6E6;"> | + | <a class="PRO-title-1" style="border-bottom: 3px solid #E6E6E6;color: #E6E6E6;">BACKGROUND</a> |
</div> | </div> | ||
− | < | + | <div id="PRO-content-all" class="content_container" style="margin-top:25vh;"> |
− | + | <div id="PRO1" class="cd-section PRO-margin-Title2Up"> | |
− | <div id="PRO1" class="cd-section"> | + | |
<div class="PRO-title-2"> | <div class="PRO-title-2"> | ||
− | <a style="text-decoration:none;color:#131313;"> | + | <a style="text-decoration:none;color:#131313;">What is ROS?</a> |
+ | </div> | ||
+ | |||
+ | <div class="PRO-content-all"> | ||
+ | <div class="PRO-content"> | ||
+ | |||
+ | <figure class="PRO-Fig PRO-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/6/63/T--BIT-China--iGEM2018-Projectbackgroundfig1.jpg"> | ||
+ | <figcaption><b>Fig. 1</b> Reactive oxygen species (ROS)</figcaption> | ||
+ | </figure> | ||
+ | |||
+ | <p class="PRO-content-p PRO-margin-toContentP"> | ||
+ | Reactive oxygen species (ROS) refers to substances that have strong oxidative properties in | ||
+ | living organisms. ROS are mainly divided into four categories: hydrogen peroxide(H<sub>2</sub>O<sub>2</sub>), | ||
+ | superoxide anion(O<sub>2</sub><sup>-</sup>), hydroxyl radicals(OH<sup>-</sup>), and single-line | ||
+ | oxygen(<sup>1</sup>[O<sub>2</sub>]). | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-1', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[1]</sup> | ||
+ | </p> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div id="PRO2" class="cd-section"> | ||
+ | <div class="PRO-title-2 PRO-margin-Title2Up"> | ||
+ | <a style="text-decoration:none;color:#131313;">The harm of the ROS</a> | ||
</div> | </div> | ||
<div class="PRO-content-all PRO-margin-toTitle2"> | <div class="PRO-content-all PRO-margin-toTitle2"> | ||
<div class="PRO-content"> | <div class="PRO-content"> | ||
− | <p class="PRO-content-p"> | + | <figure class="PRO-Fig PRO-margin-toContentP"> |
− | + | <img src="https://static.igem.org/mediawiki/2018/9/90/T--BIT-China--iGEM2018-Projectbackgroundfig2.jpg"> | |
− | + | <figcaption><b>Fig. 2</b> ROS can cause oxidative damage</figcaption> | |
+ | </figure> | ||
+ | <p class="PRO-content-p PRO-margin-toContentP"> | ||
+ | The overproduction of ROS in body organisms could lead to the damage to nucleic acids, lipids | ||
+ | and proteins, impede normal cellular metabolism, worse more, those oxidized substances can | ||
+ | attack bodies too. The accumulation of oxidative damage will eventually induce kinds of | ||
+ | diseases, such as aging, initiate cancer, arteriosclerosis and heart disease. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-2', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[2]</sup> | ||
</p> | </p> | ||
</div> | </div> | ||
Line 142: | Line 178: | ||
</div> | </div> | ||
− | <div id=" | + | <div id="PRO3" class="cd-section PRO-margin-Title2Up"> |
<div class="PRO-title-2"> | <div class="PRO-title-2"> | ||
− | <a style="text-decoration:none;color:#131313;"> | + | <a style="text-decoration:none;color:#131313;">What are antioxidants?</a> |
</div> | </div> | ||
<div class="PRO-content-all"> | <div class="PRO-content-all"> | ||
<div class="PRO-content"> | <div class="PRO-content"> | ||
− | < | + | <figure class="PRO-Fig PRO-margin-toTitle2"> |
− | + | <img src="https://static.igem.org/mediawiki/2018/2/26/T--BIT-China--iGEM2018-Projectbackgroundfig3.jpg"> | |
− | + | <figcaption><b>Fig. 3</b> Glutathione, one of Antioxidants</figcaption> | |
− | + | </figure> | |
− | + | ||
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + | |
<p class="PRO-content-p PRO-margin-toContentP"> | <p class="PRO-content-p PRO-margin-toContentP"> | ||
− | + | Antioxidants are compounds that inhibit oxidation. | |
− | + | ||
− | + | ||
</p> | </p> | ||
+ | |||
<p class="PRO-content-p PRO-margin-toContentP"> | <p class="PRO-content-p PRO-margin-toContentP"> | ||
− | + | Antioxidants can scavenge the excess ROS in the organisms. The antioxidants mentioned here is | |
− | + | not antioxidants for food preservation, nor reductants, but working in organisms. | |
− | + | <sup onmouseover="tooltip.pop(this, '#tip-3', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | |
+ | style="color:#38679a;">[3]</sup> | ||
</p> | </p> | ||
</div> | </div> | ||
Line 185: | Line 204: | ||
</div> | </div> | ||
− | <div id=" | + | <div id="PRO4" class="cd-section PRO-margin-Title2Up"> |
<div class="PRO-title-2"> | <div class="PRO-title-2"> | ||
− | <a style="text-decoration:none;color:#131313;"> | + | <a style="text-decoration:none;color:#131313;">The classification of antioxidants</a> |
</div> | </div> | ||
Line 193: | Line 212: | ||
<div class="PRO-content"> | <div class="PRO-content"> | ||
<p class="PRO-content-p PRO-margin-toTitle2"> | <p class="PRO-content-p PRO-margin-toTitle2"> | ||
− | + | To better study the performance of antioxidants in the market, we divide them into two | |
− | + | categories: direct antioxidants and indirect antioxidants, according to the mechanism of | |
+ | antioxidant action. Direct antioxidants exert antioxidant effects by redox reaction to | ||
+ | scavenging or inhibiting free radicals, such as vitamin C, vitamins E and proanthocyanidins. | ||
+ | And indirect antioxidants achieve antioxidant activity by regulating gene expression and | ||
+ | intracellular metabolism in cell endogenous antioxidant system, such as the natural | ||
+ | antioxidants oleuropein, <sup onmouseover="tooltip.pop(this, '#tip-4', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[4]</sup>quercetin, and the synthetic antioxidant probucol. The | ||
+ | antioxidants that are commonly found in cosmetics and health products on the market today are | ||
+ | vitamin C, vitamin E, tea polyphenols, etc. | ||
</p> | </p> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
− | + | <div id="PRO5" class="cd-section"> | |
− | + | <div class="PRO-title-2 PRO-margin-Title2Up"> | |
− | + | <a style="text-decoration:none;color:#131313;">The prospect in the field of antioxidants and detection</a> | |
− | + | </div> | |
− | + | ||
− | + | <div class="PRO-content-all"> | |
− | + | <div class="PRO-content"> | |
− | + | <p class="PRO-content-p PRO-margin-toTitle2"> | |
− | + | In recent years, with the improvement of people's living standards and the aging of the | |
− | + | population, health, anti-oxidant and anti-aging have attracted people's attention more and | |
− | + | become hotspots. According to statistics, the scale of China's medical and health industry has | |
− | </ | + | increased from 1.6 trillion yuan in 2009 to 5.6 trillion yuan in 2016. And it is estimated that |
− | </ | + | by 2020, the total size of China's medical and health industry will exceed 8 trillion yuan. |
+ | <sup onmouseover="tooltip.pop(this, '#tip-5', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[5]</sup> | ||
+ | </p> | ||
<p class="PRO-content-p PRO-margin-toContentP"> | <p class="PRO-content-p PRO-margin-toContentP"> | ||
− | + | Because of the functions of anti-oxidant, anti-aging, anti-tumor, anti-inflammatory, vascular | |
− | in | + | activation and the capacity of scavenging the excess ROS in the organisms, antioxidants have a |
− | and | + | remarkable prospect in the fields of pharmaceuticals, health products and cosmetics. |
− | + | <sup onmouseover="tooltip.pop(this, '#tip-6', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | |
− | + | style="color:#38679a;">[6]</sup> | |
+ | </p> | ||
+ | |||
+ | <p class="PRO-content-p PRO-margin-toContentP"> | ||
+ | Through literature review and data collection, we learned that the current antioxidant testing | ||
+ | methods on the market are not good enough, which means, there is no standard method for us to | ||
+ | judge the effects of antioxidants. So we want to establish a convenient and efficient standard | ||
+ | and detection method for evaluate antioxidants. Additionally, how to accurately evaluate the | ||
+ | activity of antioxidants is also a hot topic in the field of antioxidants research. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-7', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[7]</sup> | ||
+ | Besides, the public resist synthetic antioxidants and inclined to choose natural antioxidants. | ||
+ | <a href="https://2018.igem.org/Team:BIT-China/HPOverview" target="_Blank" style="color:#131313;">Check | ||
+ | here</a> to know what people want for antioxidants detection. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-8', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[8]</sup> | ||
+ | The most amazing thing is that countless excellent natural antioxidants are hidden in nature. | ||
+ | We just need a key of antioxidants detection method to open the huge treasure house of nature. | ||
</p> | </p> | ||
</div> | </div> | ||
Line 222: | Line 272: | ||
</div> | </div> | ||
− | <div id=" | + | <div id="PRO6" class="cd-section PRO-margin-Title2Up"> |
− | <div class="PRO-title-2"> | + | <p class="PRO-content-p PRO-margin-toContentP"> |
− | <a style="text-decoration:none;color:#131313;"> | + | Here showed the current detecting methods that we collected in the market: |
+ | </p> | ||
+ | |||
+ | <div class="PRO-title-2 PRO-margin-toContentP"> | ||
+ | <a style="text-decoration:none;color:#131313;">The existing methods of detecting antioxidants:</a> | ||
</div> | </div> | ||
<div class="PRO-content-all"> | <div class="PRO-content-all"> | ||
+ | <div class="PRO-title-3 PRO-margin-Title3Up"> | ||
+ | <a style="text-decoration:none;color:#131313;">Human studies and animal models</a> | ||
+ | </div> | ||
+ | |||
<div class="PRO-content"> | <div class="PRO-content"> | ||
− | < | + | <figure class="PRO-Fig PRO-margin-toContentP"> |
− | + | <img src="https://static.igem.org/mediawiki/2018/5/55/T--BIT-China--iGEM2018-Projectbackgroundfig4.jpg"> | |
− | </ | + | <figcaption><b>Fig. 4</b> Detecting methods based on human/animal cells</figcaption> |
+ | </figure> | ||
+ | |||
<p class="PRO-content-p PRO-margin-toContentP"> | <p class="PRO-content-p PRO-margin-toContentP"> | ||
− | + | In these existing assays for detection of antioxidants, human studies and animal models could | |
+ | give us the most truthful and reliable measurement results could. However, these are expensive | ||
+ | and time-consuming and not available for initial screening antioxidants. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-9', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[9]</sup> | ||
</p> | </p> | ||
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | < | + | <div class="PRO-title-3 PRO-margin-Title3Up"> |
− | + | <a style="text-decoration:none;color:#131313;">Chemistry methods</a> | |
− | have | + | </div> |
− | + | ||
− | + | <div class="PRO-content"> | |
+ | <figure class="PRO-Fig PRO-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/c/c8/T--BIT-China--iGEM2018-Projectbackgroundfig5.jpg"> | ||
+ | <figcaption><b>Fig. 5</b> Chemistry methods</figcaption> | ||
+ | </figure> | ||
+ | |||
+ | <p class="PRO-content-p"> | ||
+ | Chemistry methods were widely-used, including oxygen radical absorbance capacity (ORAC) | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-10', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[10]</sup> | ||
+ | , total radical-trapping antioxidant parameter (TRAP) | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-11', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[11]</sup> | ||
+ | , Trolox equivalent antioxidant capacity (TEAC) | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-12', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[12]</sup> | ||
+ | , total oxyradical scavenge capacity (TOSC) | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-13', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[13]</sup> | ||
+ | , the peroxyl scavenging capacity (PSC) | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-14', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[14]</sup> | ||
+ | , the ferric reducing/antioxidant power assay (FRAP) | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-15', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[15]</sup> | ||
+ | , and the DPPH free radical method | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-16', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[16]</sup> | ||
+ | . Although these chemistry methods are currently widely-use, their main measurement principle | ||
+ | is to characterize the reducibility of antioxidants by virous artificially synthesized | ||
+ | exogenous free radical occurring redox reactions with the antioxidants. As a result, chemistry | ||
+ | methods have the shortcoming of low biological relevance, their detecting conditions are almost | ||
+ | different from the physiological environment of cell living in, and these assays can’t evaluate | ||
+ | the effects of antioxidants in the complicated metabolic process. That means, chemical methods | ||
+ | are unable tot evaluate indirect antioxidants properly. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-17', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[17]</sup><sup onmouseover="tooltip.pop(this, '#tip-18', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[18]</sup> | ||
+ | Therefore, the authenticity of the experimental results of chemistry methods is questioned. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-19', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[19]</sup> | ||
+ | For example, USDA's Nutrient Data Laboratory (NDL) removed the USDA ORAC Database for Selected | ||
+ | Foods from the NDL website in 2012, because of the poor authenticity and low credibility of the | ||
+ | chemistry methods. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-20', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[20]</sup> | ||
+ | |||
+ | </p> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | <div class="PRO-title-3 PRO-margin-Title3Up"> | ||
+ | <a style="text-decoration:none;color:#131313;">Cell-based assays</a> | ||
+ | </div> | ||
+ | |||
+ | <div class="PRO-content"> | ||
+ | <p class="PRO-content-p"> | ||
+ | Compared to human studies and animal models, our program has shorter cycles, lower costs and | ||
+ | lower detection difficulty. Compared to chemistry methods, our project is compatible with | ||
+ | complex metabolic processes in cells, and biological relevance and data reliability have been | ||
+ | greatly improved. In addition, our project can also detect the indirect antioxidants that can’t | ||
+ | be evaluate by chemistry methods, such as antioxidants that functions by stimulating the | ||
+ | endogenous antioxidant system in cells, which have not antioxidant capacity without cells. | ||
+ | </p> | ||
+ | |||
+ | <p class="PRO-content-p"> | ||
+ | Cell-based methods for evaluating antioxidants are a novel field. Cell-based antioxidants | ||
+ | detection methods that people have developed can be roughly divided into three types. The first | ||
+ | type is the CAA assay and MTT assay developed from the traditional chemistry methods. The | ||
+ | second type is the cell-based electrochemical method evolved from the traditional | ||
+ | electrochemical methods. The third type is the engineered cells that we use to synthesize | ||
+ | biology. The third one utilize the engineering cells transformed by synthetic biological | ||
+ | methods, which can detect and evaluate the antioxidants. | ||
+ | </p> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | <div class="PRO-title-3 PRO-margin-Title3Up"> | ||
+ | <a style="text-decoration:none;color:#131313;">CAA assay</a> | ||
+ | </div> | ||
+ | |||
+ | <div class="PRO-content"> | ||
+ | <figure class="PRO-Fig PRO-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/7/70/T--BIT-China--iGEM2018-Projectbackgroundfig6.jpg"> | ||
+ | <figcaption><b>Fig. 6</b> CAA assay</figcaption> | ||
+ | </figure> | ||
+ | |||
+ | <p class="PRO-content-p"> | ||
+ | CAA assay | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-21', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[21]</sup> | ||
+ | is cell-based assay, but it still doesn’t break through the limitations of traditional | ||
+ | chemistry methods. Firstly, it still produces free radicals using artificial synthetic | ||
+ | materials used in traditional chemistry methods, such as ABAP (Azo compound) which are | ||
+ | criticized for cells. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-22', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[22]</sup> | ||
+ | |||
+ | </p> | ||
+ | |||
+ | <p class="PRO-content-p"> | ||
+ | Secondly, the CAA assay uses an artificial synthetic fluorescent probe DCFH-DA, which is widely | ||
+ | used to detect ROS currently, but the authenticity of the data obtained by this probe is | ||
+ | questioned. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-23', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[23]</sup> | ||
+ | </p> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | <div class="PRO-title-3 PRO-margin-Title3Up"> | ||
+ | <a style="text-decoration:none;color:#131313;">MTT assay</a> | ||
+ | </div> | ||
+ | |||
+ | <div class="PRO-content"> | ||
+ | <figure class="PRO-Fig PRO-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/f/f3/T--BIT-China--iGEM2018-Projectbackgroundfig7.jpg"> | ||
+ | <figcaption><b>Fig. 7</b> MTT assay</figcaption> | ||
+ | </figure> | ||
+ | |||
+ | <p class="PRO-content-p"> | ||
+ | MTT assay | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-24', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[24]</sup><sup onmouseover="tooltip.pop(this, '#tip-25', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[25]</sup> | ||
+ | breaks through the defect that the traditional chemical method can only detect single free | ||
+ | radical, and the cell survival rate is used as the standard to characterize the antioxidant | ||
+ | activity. However, the evaluation of MTT assay is not very good, because its detection | ||
+ | condition is too critical for the cell and the cell survival pressure is very high. | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-26', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[26]</sup> | ||
+ | |||
+ | </p> | ||
+ | </div> | ||
+ | |||
+ | <div class="PRO-title-3 PRO-margin-Title3Up"> | ||
+ | <a style="text-decoration:none;color:#131313;">Cell-based electrochemical assay</a> | ||
+ | </div> | ||
+ | |||
+ | <div class="PRO-content"> | ||
+ | <figure class="PRO-Fig PRO-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/f/f2/T--BIT-China--iGEM2018-Projectbackgroundfig8.png"> | ||
+ | <figcaption><b>Fig. 8</b> Cell-based electrochemical detection method</figcaption> | ||
+ | </figure> | ||
+ | |||
+ | <p class="PRO-content-p"> | ||
+ | Cell-based electrochemical detection method, | ||
+ | <sup onmouseover="tooltip.pop(this, '#tip-27', {position:1, offsetX:-20, effect:'slide',hideDelay: 10})" | ||
+ | style="color:#38679a;">[27]</sup> | ||
+ | which is based on the traditional electrochemistry and the bio-electrochemical probe. This kind | ||
+ | of method has high sensitivity and can realize real-time monitoring which is its unique | ||
+ | feature. But the high cost and critical requirement of equipment limits this method used | ||
+ | widely. | ||
+ | </p> | ||
+ | |||
+ | <figure class="PRO-Fig PRO-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/6/66/T--BIT-China--iGEM2018-Projectbackgroundfig9.jpg"> | ||
+ | <figcaption><b>Fig. 9</b> summary (advantages& disadvantages)</figcaption> | ||
+ | </figure> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="PRO7" class="cd-section"> | ||
+ | <div class="PRO-title-2"> | ||
+ | <a style="text-decoration:none;color:#131313;">What are we going to do?</a> | ||
+ | </div> | ||
+ | <div class="PRO-content-all"> | ||
+ | <div class="PRO-content"> | ||
+ | <p class="PRO-content-p"> | ||
+ | Based on the problems mentioned above, we want to screen excellent antioxidants to help us | ||
+ | scavenge ROS against aging and diseases. Our goal is to build a system with function of | ||
+ | detecting the antioxidants and has the advantages of high biological relevance, simple | ||
+ | operation, low-cost, good reproducibility, accuracy, and high sensitivity for antioxidant | ||
+ | detection. More importantly, we hope to establish an efficient standard for evaluating | ||
+ | antioxidants through our system. | ||
</p> | </p> | ||
</div> | </div> | ||
Line 289: | Line 515: | ||
</div> | </div> | ||
<!-- end --> | <!-- end --> | ||
+ | |||
+ | <div style="display:none;font-family: 'helveticaregular';"> | ||
+ | <div id="tip-1"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Qiang Ma. Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol. 2013; 53: | ||
+ | 401–426. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-2"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Liu R H, Finley J. Potential cell culture models for antioxidant research[J]. Journal of | ||
+ | agricultural and food chemistry, 2005, 53(10): 4311-4314. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-3"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>https://en.wikipedia.org/wiki/Antioxidant | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div id="tip-4"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Ce Shi, Xiangrong Chen, Zuojia Liu, Rizeng Meng, Xingchen Zhao, Zonghui Liu, Na Guo . Oleuropein | ||
+ | protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT | ||
+ | expression [J]. Biomedicine & Pharmacotherapy 85 (2017) 740–748 | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div id="tip-5"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>http://www.sohu.com/a/224972720_100018121 | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div id="tip-6"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell | ||
+ | culture: how should you do it and what do the results mean?[J]. British journal of pharmacology, | ||
+ | 2004, 142(2): 231-255. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-7"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants[J]. | ||
+ | Free Radical Research, 2015, 49(5):633-49. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-8"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Wolfe K L, Liu R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and | ||
+ | dietary supplements. [J]. Journal of Agricultural & Food Chemistry, 2007, 55(22):8896. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div id="tip-9"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Cao G, Alessio H M, Cutler R G. Oxygen-radical absorbance capacity assays for antioxidants. Free Rad | ||
+ | Biol Med 1:303-311[J]. Free Radical Biology & Medicine, 1993, 14(3):303-311. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-10"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Andrea Ghiselli, Mauro Serafini, Giuseppe Maiani, et al. A fluorescence-based method for measuring | ||
+ | total plasma antioxidant capability[J]. Free Radical Biology and Medicine, 1995, 18(1):29-36. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div id="tip-11"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Miller N J, Rice-Evans C, Davies M J, et al. A novel method for measuring antioxidant capacity and | ||
+ | its application to monitoring the antioxidant status in premature neonates[J]. Clinical Science, | ||
+ | 1993, 84(4):407-412. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-12"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Winston G W, Regoli F, Dugas Jr A J, et al. A rapid gas chromatographic assay for determining | ||
+ | oxyradical scavenging capacity of antioxidants and biological fluids[J]. Free Radical Biology and | ||
+ | Medicine, 1998, 24(3): 480-493. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div id="tip-13"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Adom K K, Liu R H. Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both | ||
+ | hydrophilic and lipophilic antioxidants[J]. Journal of Agricultural & Food Chemistry, 2005, | ||
+ | 53(17):6572. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-14"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Benzie IF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant | ||
+ | Power”: The FRAP Assay[J]. Analytical Biochemistry, 1996, 239(1):70-6. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-15"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>W. Brand-Williams, M.E. Cuvelier, C. Berset. Use of a free radical method to evaluate antioxidant | ||
+ | activity[J]. Lwt-Food Science and Technology, 1995, 28(1):25-30. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-16"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Liu R H, Finley J. Potential cell culture models for antioxidant research.[J]. Journal of | ||
+ | Agricultural & Food Chemistry, 2005, 53(10):4311. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-17"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Cheli F, Baldi A. Nutrition‐Based Health: Cell‐Based Bioassays for Food Antioxidant Activity | ||
+ | Evaluation[J]. Journal of Food Science, 2011, 76(9): R197-R205. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-18"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants[J]. | ||
+ | Free Radical Research, 2015, 49(5):633-49. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-19"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Dickinson B C, Chang C J. Chemistry and biology of reactive oxygen species in signaling or stress | ||
+ | responses[J]. Nature Chemical Biology, 2011, 7(8):504-11. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-20"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/oxygen-radical-absorbance-capacity-orac-of-selected-foods-release-2-2010/ | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-21"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Wolfe K L, Liu R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and | ||
+ | dietary supplements. [J]. Journal of Agricultural & Food Chemistry, 2007, 55(22):8896. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-22"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Frankel E N, Meyer A S. The problems of using one‐dimensional methods to evaluate multifunctional | ||
+ | food and biological antioxidants[J]. Journal of the Science of Food and Agriculture, 2000, 80(13): | ||
+ | 1925-1941. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-23"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Bonini M G, Rota C, Tomasi A, et al. The oxidation of 2′, 7′-dichlorofluorescin to reactive oxygen | ||
+ | species: a self-fulfilling prophesy?[J]. Free Radical Biology and Medicine, 2006, 40(6): 968-975. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-24"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Papi A, Orlandi M, Bartolini G, et al. Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl | ||
+ | isothiocyanate from Raphanus sativus L.(Kaiware Daikon) sprouts[J]. Journal of agricultural and | ||
+ | food chemistry, 2008, 56(3): 875-883. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-25"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>毛绍春, 李竹英, 李聪. 生物-光度法检测抗氧化剂抗氧化活性[J]. 分析试验室, 2008, 27(4):36-39. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="tip-26"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants. [J]. | ||
+ | Free Radical Research, 2015, 49(5):633-49. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div id="tip-27"> | ||
+ | <div class="column" style="width:230px;height: 100px;"> | ||
+ | <a>Ge Q, Ge P, Jiang D, et al. A novel and simple cell-based electrochemical biosensor for evaluating | ||
+ | the antioxidant capacity of Lactobacillus plantarum strains isolated from Chinese dry-cured ham[J]. | ||
+ | Biosensors and Bioelectronics, 2018, 99: 555-563. | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
<script src="https://2018.igem.org/Template:BIT-China/js/jquery-min?action=raw&ctype=text/javascript"></script> | <script src="https://2018.igem.org/Template:BIT-China/js/jquery-min?action=raw&ctype=text/javascript"></script> | ||
Line 298: | Line 753: | ||
}) | }) | ||
</script> | </script> | ||
+ | <script src="https://2018.igem.org/Template:BIT-China/js/Tooltip?action=raw&ctype=text/javascript"></script> | ||
</body> | </body> | ||
</html> | </html> |
Revision as of 20:36, 16 October 2018
Reactive oxygen species (ROS) refers to substances that have strong oxidative properties in living organisms. ROS are mainly divided into four categories: hydrogen peroxide(H2O2), superoxide anion(O2-), hydroxyl radicals(OH-), and single-line oxygen(1[O2]). [1]
The overproduction of ROS in body organisms could lead to the damage to nucleic acids, lipids and proteins, impede normal cellular metabolism, worse more, those oxidized substances can attack bodies too. The accumulation of oxidative damage will eventually induce kinds of diseases, such as aging, initiate cancer, arteriosclerosis and heart disease. [2]
Antioxidants are compounds that inhibit oxidation.
Antioxidants can scavenge the excess ROS in the organisms. The antioxidants mentioned here is not antioxidants for food preservation, nor reductants, but working in organisms. [3]
To better study the performance of antioxidants in the market, we divide them into two categories: direct antioxidants and indirect antioxidants, according to the mechanism of antioxidant action. Direct antioxidants exert antioxidant effects by redox reaction to scavenging or inhibiting free radicals, such as vitamin C, vitamins E and proanthocyanidins. And indirect antioxidants achieve antioxidant activity by regulating gene expression and intracellular metabolism in cell endogenous antioxidant system, such as the natural antioxidants oleuropein, [4]quercetin, and the synthetic antioxidant probucol. The antioxidants that are commonly found in cosmetics and health products on the market today are vitamin C, vitamin E, tea polyphenols, etc.
In recent years, with the improvement of people's living standards and the aging of the population, health, anti-oxidant and anti-aging have attracted people's attention more and become hotspots. According to statistics, the scale of China's medical and health industry has increased from 1.6 trillion yuan in 2009 to 5.6 trillion yuan in 2016. And it is estimated that by 2020, the total size of China's medical and health industry will exceed 8 trillion yuan. [5]
Because of the functions of anti-oxidant, anti-aging, anti-tumor, anti-inflammatory, vascular activation and the capacity of scavenging the excess ROS in the organisms, antioxidants have a remarkable prospect in the fields of pharmaceuticals, health products and cosmetics. [6]
Through literature review and data collection, we learned that the current antioxidant testing methods on the market are not good enough, which means, there is no standard method for us to judge the effects of antioxidants. So we want to establish a convenient and efficient standard and detection method for evaluate antioxidants. Additionally, how to accurately evaluate the activity of antioxidants is also a hot topic in the field of antioxidants research. [7] Besides, the public resist synthetic antioxidants and inclined to choose natural antioxidants. Check here to know what people want for antioxidants detection. [8] The most amazing thing is that countless excellent natural antioxidants are hidden in nature. We just need a key of antioxidants detection method to open the huge treasure house of nature.
Here showed the current detecting methods that we collected in the market:
In these existing assays for detection of antioxidants, human studies and animal models could give us the most truthful and reliable measurement results could. However, these are expensive and time-consuming and not available for initial screening antioxidants. [9]
Chemistry methods were widely-used, including oxygen radical absorbance capacity (ORAC) [10] , total radical-trapping antioxidant parameter (TRAP) [11] , Trolox equivalent antioxidant capacity (TEAC) [12] , total oxyradical scavenge capacity (TOSC) [13] , the peroxyl scavenging capacity (PSC) [14] , the ferric reducing/antioxidant power assay (FRAP) [15] , and the DPPH free radical method [16] . Although these chemistry methods are currently widely-use, their main measurement principle is to characterize the reducibility of antioxidants by virous artificially synthesized exogenous free radical occurring redox reactions with the antioxidants. As a result, chemistry methods have the shortcoming of low biological relevance, their detecting conditions are almost different from the physiological environment of cell living in, and these assays can’t evaluate the effects of antioxidants in the complicated metabolic process. That means, chemical methods are unable tot evaluate indirect antioxidants properly. [17][18] Therefore, the authenticity of the experimental results of chemistry methods is questioned. [19] For example, USDA's Nutrient Data Laboratory (NDL) removed the USDA ORAC Database for Selected Foods from the NDL website in 2012, because of the poor authenticity and low credibility of the chemistry methods. [20]
Compared to human studies and animal models, our program has shorter cycles, lower costs and lower detection difficulty. Compared to chemistry methods, our project is compatible with complex metabolic processes in cells, and biological relevance and data reliability have been greatly improved. In addition, our project can also detect the indirect antioxidants that can’t be evaluate by chemistry methods, such as antioxidants that functions by stimulating the endogenous antioxidant system in cells, which have not antioxidant capacity without cells.
Cell-based methods for evaluating antioxidants are a novel field. Cell-based antioxidants detection methods that people have developed can be roughly divided into three types. The first type is the CAA assay and MTT assay developed from the traditional chemistry methods. The second type is the cell-based electrochemical method evolved from the traditional electrochemical methods. The third type is the engineered cells that we use to synthesize biology. The third one utilize the engineering cells transformed by synthetic biological methods, which can detect and evaluate the antioxidants.
CAA assay [21] is cell-based assay, but it still doesn’t break through the limitations of traditional chemistry methods. Firstly, it still produces free radicals using artificial synthetic materials used in traditional chemistry methods, such as ABAP (Azo compound) which are criticized for cells. [22]
Secondly, the CAA assay uses an artificial synthetic fluorescent probe DCFH-DA, which is widely used to detect ROS currently, but the authenticity of the data obtained by this probe is questioned. [23]
MTT assay [24][25] breaks through the defect that the traditional chemical method can only detect single free radical, and the cell survival rate is used as the standard to characterize the antioxidant activity. However, the evaluation of MTT assay is not very good, because its detection condition is too critical for the cell and the cell survival pressure is very high. [26]
Cell-based electrochemical detection method, [27] which is based on the traditional electrochemistry and the bio-electrochemical probe. This kind of method has high sensitivity and can realize real-time monitoring which is its unique feature. But the high cost and critical requirement of equipment limits this method used widely.
Based on the problems mentioned above, we want to screen excellent antioxidants to help us scavenge ROS against aging and diseases. Our goal is to build a system with function of detecting the antioxidants and has the advantages of high biological relevance, simple operation, low-cost, good reproducibility, accuracy, and high sensitivity for antioxidant detection. More importantly, we hope to establish an efficient standard for evaluating antioxidants through our system.