Difference between revisions of "Team:SJTU-software/Description"

 
(16 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
<html>
 
<html>
 
<style>
 
<style>
/*================================================================================*/
+
            /*================================================================================*/
 
             /*public engagement*/
 
             /*public engagement*/
 
             #posts-list {
 
             #posts-list {
Line 18: Line 18:
 
             padding-bottom: 40px;
 
             padding-bottom: 40px;
 
             border-bottom: 1px solid #6b3b25;
 
             border-bottom: 1px solid #6b3b25;
 +
            text-align:justify;
 
             }
 
             }
 
             #posts-list article:last-child {
 
             #posts-list article:last-child {
Line 30: Line 31:
 
             -o-box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.2);
 
             -o-box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.2);
 
             box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.2);
 
             box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.2);
             margin-bottom: 20px;
+
             margin: 0px 66px 6px 66px;
 
             }
 
             }
 
             #posts-list article .feature-image:after {
 
             #posts-list article .feature-image:after {
Line 37: Line 38:
 
             left: 0px;
 
             left: 0px;
 
             content: '';
 
             content: '';
             background: url(https://raw.githubusercontent.com/sjtusoftware2018/2018iGEM_wiki/master/images/stacked-paper.png) no-repeat right bottom;
+
             background: url(https://static.igem.org/mediawiki/2018/2/2e/T--SJTU-software--stacked-paper.png) no-repeat right bottom;
 
             width: 100%;
 
             width: 100%;
 
             height: 17px;
 
             height: 17px;
Line 122: Line 123:
 
             float: left;
 
             float: left;
 
             margin-right: 20px;
 
             margin-right: 20px;
             background: url(https://raw.githubusercontent.com/sjtusoftware2018/2018iGEM_wiki/master/images/pagination.png) no-repeat 0px 0px;
+
             background: url(https://static.igem.org/mediawiki/2018/2/2d/T--SJTU-software--pagination.png) no-repeat 0px 0px;
 
             }
 
             }
 
             #posts-list .page-navigation .nav-previous {
 
             #posts-list .page-navigation .nav-previous {
 
             float: right;
 
             float: right;
             background: url(https://raw.githubusercontent.com/sjtusoftware2018/2018iGEM_wiki/master/images/pagination.png) no-repeat right -59px;
+
             background: url(https://static.igem.org/mediawiki/2018/2/2d/T--SJTU-software--pagination.png) no-repeat right -59px;
 
             }
 
             }
            /*-----------------------------------------------------------------------------------*/
+
    /*-----------------------------------------------------------------------------------*/
 +
  /*-----------------------------------------------------------------------------------*/
 +
    /* SIDEBAR
 +
    /*-----------------------------------------------------------------------------------*/
 +
    #sidebar {
 +
    position: relative;
 +
    width: 220px;
 +
    margin-right: 30px;
 +
    margin-top: 30px;
 +
    margin-bottom: 30px;
 +
    float: right;
 +
    }
 +
    #sidebar .block {
 +
    font-size: 17px;
 +
    margin-bottom: 15px;
 +
    font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
 +
    text-shadow: 0px 1px 0 rgba(255, 255, 255, 0.5);
 +
    }
 +
    #sidebar .block a {
 +
    text-decoration: none;
 +
    color: #c78301;
 +
    }
 +
    #sidebar .block a:hover {
 +
    border-bottom: 1px dotted #c78301;
 +
    }
 +
    #sidebar .block .heading {
 +
    color: #6b3b25;
 +
    font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
 +
    font-weight: 700;
 +
    line-height: 20px;
 +
    font-size: 20px;
 +
    border-top: 4px solid #6b3b25;
 +
    border-bottom: 1px solid #6b3b25;
 +
    text-shadow: 0px 1px 0 rgba(255, 255, 255, 0.5);
 +
    margin-top: 0px;
 +
    }
 +
    #sidebar .ads img {
 +
    margin-bottom: 10px;
 +
    margin-right: 0px;
 +
    }
 +
    /*-----------------------------------------------------------------------------------*/
  
            /*-----------------------------------------------------------------------------------*/
 
            /* SIDEBAR
 
            /*-----------------------------------------------------------------------------------*/
 
            #sidebar {
 
            position: relative;
 
            width: 230px;
 
            margin-right: 20px;
 
            margin-top: 30px;
 
            margin-bottom: 30px;
 
            float: right;
 
            }
 
            #sidebar .block {
 
            font-size: 18px;
 
            margin-bottom: 30px;
 
            font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
 
            text-shadow: 0px 1px 0 rgba(255, 255, 255, 0.5);
 
            }
 
            #sidebar .block a {
 
            text-decoration: none;
 
            color: #c78301;
 
            }
 
            #sidebar .block a:hover {
 
            border-bottom: 1px dotted #c78301;
 
            }
 
            #sidebar .block .heading {
 
            font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
 
            color: #6b3b25;
 
            font-weight: 700;
 
            line-height: 48px;
 
            font-size: 20px;
 
            border-top: 4px solid #6b3b25;
 
            border-bottom: 1px solid #6b3b25;
 
            text-shadow: 0px 1px 0 rgba(255, 255, 255, 0.5);
 
            margin-top: 0px;
 
            }
 
            #sidebar .ads img {
 
            margin-bottom: 10px;
 
            margin-right: 0px;
 
            }
 
            /*-----------------------------------------------------------------------------------*/
 
 
             .headline{
 
             .headline{
 
                 color: #6b3b25;
 
                 color: #6b3b25;
 
                 text-decoration: none;
 
                 text-decoration: none;
 
                 font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
 
                 font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
                 font-size: 35px;
+
                 font-size: 32px;
 
                 font-weight: 800;
 
                 font-weight: 800;
                 margin: 15px;
+
                 margin: 20px;
 
             }
 
             }
 
             ul{
 
             ul{
                 list-style: none;;
+
                 list-style:none;
 
             }
 
             }
 +
 +
            li{
 +
      padding: 4px 0px 1px 0px;
 +
      margin: 2px 0px 1px 0px;
 +
    }
 +
      .excerpt a {
 +
    color: #e09402;
 +
    text-decoration: none;
 +
    }
 +
    .excerpt a:hover {
 +
    color:  #c78301;
 +
    border-bottom: 1px dotted  #c78301;
 +
}
 
</style>
 
</style>
  
Line 201: Line 215:
 
                             </div>
 
                             </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                                With the development of experimental techniques such as yeast two-hybrid, mass spectrometry, chromosome immunoprecipitation, tandem affinity purifica-tion, protein chip, phage display and literature mining, a large number of mo-lecular interaction data, also known as biological network data, such as protein interaction network, metabolic network, Gene expression network, gene regula-tory network and signal transduction network have been generated. And these data showed an exponential growth trend.  
+
                              With the development of experimental techniques such as yeast two-hybrid, mass spectrometry, chromosome immunoprecipitation, tandem affinity purification, protein chip, phage display and literature mining, a large number of molecular interaction data, also known as biological network data, such as protein interaction network, metabolic network, Gene expression network, gene regulatory network and signal transduction network have been generated. And these data showed an exponential growth trend.
 
                             </div>
 
                             </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                                Nowadays, a great deal of research work on biological network data has been carried out.Among them, one of important researches is the comparative analy-sis of biological network data, the alignment of biological networks.Through the alignment, we can understand and study organisms, find the correlation between their structure and function, study the evolution and evolution of organisms based on the comparison results of biological network data, and transfer knowledge between different networks. With unknown organisms, we study un-known organisms.
+
                            Nowadays, a great deal of research work on biological network data has been carried out. Among them, one of important researches is the comparative analysis of biological network data, the alignment of biological networks. Through the alignment, we can understand and study organisms, find the correlation between their structure and function, study the evolution and evolution of organisms based on the comparison results of biological network data, and transfer knowledge between different networks. With unknown organisms, we study un-known organisms.
 
                             </div>
 
                             </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                                At present, most of the research work is only for a specific problem or applica-tion, the time complexity of the algorithm is high, and the algorithm is Ineffi-cient.The aim of the research on alignment models and algorithms of biological networks is to develop a general-purpose alignment software, which can effi-ciently align multiple biological networks with multiple application patterns, similar to the sequence alignment software BLAST.
+
                              At present, most of the research work is only for a specific problem or application, the time complexity of the algorithm is high, and the algorithm is inefficient. The aim of the research on alignment models and algorithms of biological networks is to develop a general-purpose alignment software, which can efficiently align multiple biological networks with multiple application patterns, similar to the sequence alignment software BLAST.
 
                             </div>
 
                             </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                                At the same time, the Systems Biology Markup Language(SBML), a representa-tion and standard format representing many different classes of biological phe-nomena, including metabolic networks, cell signaling pathways, is frequent-ly used and visualized. There are currently three Levels of SBML defined. SBML is defined in Levels. However, each Level can have multiple Versions within it, and new Versions of a Level dosupersede old Versions of that same Level. Therefore, it is neces-sary to be compared in different versions.
+
                              At the same time, the Systems Biology Markup Language (SBML), a representation and standard format representing many different classes of biological phenomena, including metabolic networks, cell signaling pathways, is frequently used and visualized. There are currently three LEVELs of SBML defined. SBML is defined in LEVELs. However, each LEVEL can have multiple VERSIONs within it, and new VERSIONs of a LEVEL dosupersede old VERSIONs of that same LEVEL. Therefore, it is necessary to be compared in different versions.
 +
                            </div>
 +
                            <div class="excerpt">
 +
                              Using Metlab, researchers are likely to find some interesting genes through network comparisons to establish their own metabolic pathway. Therefore, we present them with the gene editing section. The gene of interest can be easily analyzed in different aspects. Certainly, the analysis of a chromosome or a plasmid is also available. Different from the traditional NCBI database, this section is nicely visualized and functionally improved.
 
                             </div>
 
                             </div>
                            <!-- <div class="feature-image">
 
                              <img src="https://raw.githubusercontent.com/sjtusoftware2018/2018iGEM_wiki/master/images/HP/BUDS2.jpg" alt="Thumbnail" />
 
                            </div> -->
 
 
                      
 
                      
 
                         </article>
 
                         </article>
Line 223: Line 237:
 
                             </div>
 
                             </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                                METLAB is an online integrated Toolbox, focusing on more efficient network alignment and more convenient model visualization. Due to requirement we found in actual study ,several bioinformatics tools are integrated into METLAB , to help users research more effectively. The interface is terse, friendly and can be used conveniently with steady and safe in motion. Simply choose one func-tion, upload the .met file and run, users can get what they need.
+
                              METLAB is an online integrated Toolbox, focusing on more efficient network alignment and more convenient model visualization. Due to requirement we found in actual study, several bioinformatics tools are integrated into METLAB, to help users research more effectively. The interface is terse, friendly and can be used conveniently with steady and safe in motion. Simply choose one function, upload the .met file and run, users can get what they need.
 
                             </div>
 
                             </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                                One of the primary functions in Metlab is biological network alignment, present-ed in a friendly way.. It makes it accessible to make comparisons between local pathway and online pathways, in order to get the whole picture. Its metabolic networks model is constructed on the basis of BiGG. With just one click, users can obtain analysis report for their pathway, which is defined by metabolite reaction. Metlab can also be used to visualize SBML model and com-pare different versions of SBML model. And another function is SMILES’s visualization.
+
                              One of the primary functions in Metlab is biological network alignment, presented in a vivid way. It makes comparisons between local pathway and online pathways accessible, in order to get the whole picture. Its metabolic networks model is constructed on the basis of BiGG. With just one click, users can obtain an analysis report for their pathway, which is defined by metabolite reaction. Metlab can also be used to visualize SBML model and compare different versions. Other functions include SMILES’s visualization and DNA editing.
 
                             </div>
 
                             </div>
 
                             <!-- <div class="excerpt">
 
                             <!-- <div class="excerpt">
Line 239: Line 253:
 
                             </div>
 
                             </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                                 Visit <a href="http://metlab-sjtu.com" target="_blank" >http://metlab-sjtu.com </a>.
+
                                 Visit <a href="http://metlab-sjtu.com" target="_blank" >http://metlab-sjtu.com </a>
 
                             </div>
 
                             </div>
 
                             <div class="feature-image">
 
                             <div class="feature-image">
                                 <img src="https://static.igem.org/mediawiki/2018/6/65/T--SJTU-software--METLAB.jpg">
+
                                 <img src="https://static.igem.org/mediawiki/2018/a/a8/T--SJTU-software--MetLab.jpg">
 
                             </div>
 
                             </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
Line 264: Line 278:
 
                         <ul>
 
                         <ul>
 
                             <li class="block">
 
                             <li class="block">
                                 <h4 class="heading">Description</h4>
+
                                 <h4 class="heading" align="center">Description</h4>
 
                                 <ul>
 
                                 <ul>
 
                                     <li class="cat-item"><a href="#Background" >BACKGROUND</a></li>
 
                                     <li class="cat-item"><a href="#Background" >BACKGROUND</a></li>

Latest revision as of 08:05, 17 October 2018

Project —— Description
BACKGROUND
With the development of experimental techniques such as yeast two-hybrid, mass spectrometry, chromosome immunoprecipitation, tandem affinity purification, protein chip, phage display and literature mining, a large number of molecular interaction data, also known as biological network data, such as protein interaction network, metabolic network, Gene expression network, gene regulatory network and signal transduction network have been generated. And these data showed an exponential growth trend.
Nowadays, a great deal of research work on biological network data has been carried out. Among them, one of important researches is the comparative analysis of biological network data, the alignment of biological networks. Through the alignment, we can understand and study organisms, find the correlation between their structure and function, study the evolution and evolution of organisms based on the comparison results of biological network data, and transfer knowledge between different networks. With unknown organisms, we study un-known organisms.
At present, most of the research work is only for a specific problem or application, the time complexity of the algorithm is high, and the algorithm is inefficient. The aim of the research on alignment models and algorithms of biological networks is to develop a general-purpose alignment software, which can efficiently align multiple biological networks with multiple application patterns, similar to the sequence alignment software BLAST.
At the same time, the Systems Biology Markup Language (SBML), a representation and standard format representing many different classes of biological phenomena, including metabolic networks, cell signaling pathways, is frequently used and visualized. There are currently three LEVELs of SBML defined. SBML is defined in LEVELs. However, each LEVEL can have multiple VERSIONs within it, and new VERSIONs of a LEVEL dosupersede old VERSIONs of that same LEVEL. Therefore, it is necessary to be compared in different versions.
Using Metlab, researchers are likely to find some interesting genes through network comparisons to establish their own metabolic pathway. Therefore, we present them with the gene editing section. The gene of interest can be easily analyzed in different aspects. Certainly, the analysis of a chromosome or a plasmid is also available. Different from the traditional NCBI database, this section is nicely visualized and functionally improved.
WHAT IS METLAB ?
METLAB is an online integrated Toolbox, focusing on more efficient network alignment and more convenient model visualization. Due to requirement we found in actual study, several bioinformatics tools are integrated into METLAB, to help users research more effectively. The interface is terse, friendly and can be used conveniently with steady and safe in motion. Simply choose one function, upload the .met file and run, users can get what they need.
One of the primary functions in Metlab is biological network alignment, presented in a vivid way. It makes comparisons between local pathway and online pathways accessible, in order to get the whole picture. Its metabolic networks model is constructed on the basis of BiGG. With just one click, users can obtain an analysis report for their pathway, which is defined by metabolite reaction. Metlab can also be used to visualize SBML model and compare different versions. Other functions include SMILES’s visualization and DNA editing.
HOW TO USE IT?
Select the function in need on the page.
Upload the .met file.
Have a try!

    Address

    NO. 800 Dongchuan Road, Minhang District, Shanghai, China

    Contact Us

    rockywei@sjtu.edu.cn

    SJTU-software