Difference between revisions of "Team:SJTU-software/Design"

 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
<html>
 
<html>
 
<style>
 
<style>
/*================================================================================*/
+
            /*================================================================================*/
 
             /*public engagement*/
 
             /*public engagement*/
 
             #posts-list {
 
             #posts-list {
 
                 position: relative;
 
                 position: relative;
                 width: 900px;
+
                 width: 720px;
 
                 margin-top: 15px;
 
                 margin-top: 15px;
                 margin-left: 40px;
+
                 margin-left: 30px;
                 margin-right: 40px;
+
                 margin-bottom: 40px;
                 margin-bottom: 30px;
+
                 float: left;
 
+
 
             }
 
             }
  
Line 19: Line 18:
 
             padding-bottom: 40px;
 
             padding-bottom: 40px;
 
             border-bottom: 1px solid #6b3b25;
 
             border-bottom: 1px solid #6b3b25;
 +
            text-align:justify;
 
             }
 
             }
 
             #posts-list article:last-child {
 
             #posts-list article:last-child {
Line 31: Line 31:
 
             -o-box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.2);
 
             -o-box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.2);
 
             box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.2);
 
             box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.2);
             margin-bottom: 20px;
+
             margin: 0px 66px 6px 66px;
 
             }
 
             }
 
             #posts-list article .feature-image:after {
 
             #posts-list article .feature-image:after {
Line 38: Line 38:
 
             left: 0px;
 
             left: 0px;
 
             content: '';
 
             content: '';
             background: url(https://raw.githubusercontent.com/sjtusoftware2018/2018iGEM_wiki/master/images/stacked-paper.png) no-repeat right bottom;
+
             background: url(https://static.igem.org/mediawiki/2018/2/2e/T--SJTU-software--stacked-paper.png) no-repeat right bottom;
 
             width: 100%;
 
             width: 100%;
 
             height: 17px;
 
             height: 17px;
Line 123: Line 123:
 
             float: left;
 
             float: left;
 
             margin-right: 20px;
 
             margin-right: 20px;
             background: url(https://raw.githubusercontent.com/sjtusoftware2018/2018iGEM_wiki/master/images/pagination.png) no-repeat 0px 0px;
+
             background: url(https://static.igem.org/mediawiki/2018/2/2d/T--SJTU-software--pagination.png) no-repeat 0px 0px;
 
             }
 
             }
 
             #posts-list .page-navigation .nav-previous {
 
             #posts-list .page-navigation .nav-previous {
 
             float: right;
 
             float: right;
             background: url(https://raw.githubusercontent.com/sjtusoftware2018/2018iGEM_wiki/master/images/pagination.png) no-repeat right -59px;
+
             background: url(https://static.igem.org/mediawiki/2018/2/2d/T--SJTU-software--pagination.png) no-repeat right -59px;
 
             }
 
             }
 
             /*-----------------------------------------------------------------------------------*/
 
             /*-----------------------------------------------------------------------------------*/
 +
    /*-----------------------------------------------------------------------------------*/
 +
    /* SIDEBAR
 +
    /*-----------------------------------------------------------------------------------*/
 +
    #sidebar {
 +
    position: relative;
 +
    width: 220px;
 +
    margin-right: 30px;
 +
    margin-top: 30px;
 +
    margin-bottom: 30px;
 +
    float: right;
 +
    }
 +
    #sidebar .block {
 +
    font-size: 17px;
 +
    margin-bottom: 15px;
 +
    font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
 +
    text-shadow: 0px 1px 0 rgba(255, 255, 255, 0.5);
 +
    }
 +
    #sidebar .block a {
 +
    text-decoration: none;
 +
    color: #c78301;
 +
    }
 +
    #sidebar .block a:hover {
 +
    border-bottom: 1px dotted #c78301;
 +
    }
 +
    #sidebar .block .heading {
 +
    color: #6b3b25;
 +
    font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
 +
    font-weight: 700;
 +
    line-height: 20px;
 +
    font-size: 20px;
 +
    border-top: 4px solid #6b3b25;
 +
    border-bottom: 1px solid #6b3b25;
 +
    text-shadow: 0px 1px 0 rgba(255, 255, 255, 0.5);
 +
    margin-top: 0px;
 +
    }
 +
    #sidebar .ads img {
 +
    margin-bottom: 10px;
 +
    margin-right: 0px;
 +
    }
 +
    /*-----------------------------------------------------------------------------------*/
 +
 
             .headline{
 
             .headline{
 
                 color: #6b3b25;
 
                 color: #6b3b25;
 
                 text-decoration: none;
 
                 text-decoration: none;
 
                 font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
 
                 font-family: "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
                 font-size: 35px;
+
                 font-size: 32px;
 
                 font-weight: 800;
 
                 font-weight: 800;
                 margin: 27px;
+
                 margin: 20px;
 
             }
 
             }
 
             ul{
 
             ul{
                 list-style: none;;
+
                 list-style:none;
 
             }
 
             }
 +
 +
            li{
 +
      padding: 4px 0px 1px 0px;
 +
      margin: 2px 0px 1px 0px;
 +
    }
 
</style>
 
</style>
  
Line 150: Line 196:
 
             <div id="main" class="cf">
 
             <div id="main" class="cf">
 
                 <div class="headline">
 
                 <div class="headline">
                     Project —— Design  
+
                     Project —— Design & Contribution
 
                 </div>
 
                 </div>
 
                     <!-- posts list -->
 
                     <!-- posts list -->
 
                     <div id="posts-list" class="cf">  
 
                     <div id="posts-list" class="cf">  
 
                          
 
                          
                         <article class="cf">
+
                         <article class="cf" id="Design" >
                         
+
                            <div class="entry-title">
 +
                                <div class="post-heading" >Design</div>
 +
                            </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
 
                                 Since the birth of synthetic biology in 2000, metabolic engineering has made increasingly huge progress on high value-added natural products. The synthesis and construction of metabolic pathways play a fundamental role in microbiology, biochemistry, and many other relevant fields. In 2003, Jay Keasling’s team reconstructed the biological synthesis pathway of arteannuinic acid in E. coli, providing functional confirmation for this metabolic process. In recent years, researchers have engineered yeast to produce a variety of plant-based natural products. These pathways are likely to involve the introduction of many heterologous genes and numerous genetic modifications to increase productivity. In the biosynthesis of opioids in yeast, 17 enzymes from different plants, animals, and yeasts were encoded through synthetic biological way. Although there are several tools for scientists to analyze and select the potential genes of the designed pathway, these tools all focus on the one or two specific gene instead of the whole metabolic system. Therefore, what our team’s trying to do is making comparisons between the designed pathway we want to synthesize and the natural-existing pathways to make sure that the researchers can get the whole picture. In this way, scientists can learn more about molecular functions and biological process from an innovating aspect.
 
                                 Since the birth of synthetic biology in 2000, metabolic engineering has made increasingly huge progress on high value-added natural products. The synthesis and construction of metabolic pathways play a fundamental role in microbiology, biochemistry, and many other relevant fields. In 2003, Jay Keasling’s team reconstructed the biological synthesis pathway of arteannuinic acid in E. coli, providing functional confirmation for this metabolic process. In recent years, researchers have engineered yeast to produce a variety of plant-based natural products. These pathways are likely to involve the introduction of many heterologous genes and numerous genetic modifications to increase productivity. In the biosynthesis of opioids in yeast, 17 enzymes from different plants, animals, and yeasts were encoded through synthetic biological way. Although there are several tools for scientists to analyze and select the potential genes of the designed pathway, these tools all focus on the one or two specific gene instead of the whole metabolic system. Therefore, what our team’s trying to do is making comparisons between the designed pathway we want to synthesize and the natural-existing pathways to make sure that the researchers can get the whole picture. In this way, scientists can learn more about molecular functions and biological process from an innovating aspect.
Line 162: Line 210:
 
                          
 
                          
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                              During the project, we had the pleasure to interview a PhD student in the university of Toronto. Based on his experiences working on biological metabolism, changing from several different software to visualize the network, do simulations or other studies, is quite inconvenient. Therefore, he suggested us to make our tool more handful for researches by integrating a few frequently-used functions together. Thanks to his advice, we added a new function into our project – <strong>SBML Drawer</strong>. <strong>SBML Drawer</strong> can visualize networks by taking xml files as input.
+
                              During the project, we had the pleasure to interview a PhD student in the university of Toronto. Based on his experiences working on biological metabolism, changing from several different software to visualize the network, do simulations or other studies, is quite inconvenient. Therefore, he suggested us to make our tool more handful for researches by integrating a few frequently-used functions together.  
 
                             </div>
 
                             </div>
  
                           <div class="excerpt">
+
                           <div class="excerpt">                            
                                Then, we took a survey among students in the biology department in our school, and selected another two commonly-needed functions to combine into the toolkit, including <strong>SMILES Drawer</strong> and <strong>Gene Editor</strong>. People taking our survey were reported of having the need to compare the similarities between metabolites. <strong>SMILES Drawer</strong> enables people to calculate the similarity coefficient between metabolites, and preview their molecular structures. At the same time, <strong>Gene Editor</strong> was created to help researchers simulate the process of enzyme digestion, DNA translation and manage Genbank features of genomes they study.
+
                            Besides, according to our survey among students in the biology department in our school, an integrated synthetic biology tool box was in urgent need. So we selected some commonly-needed functions to combine into the toolkit, containing SBML Drawer, SBML Differ, SMILES Drawer and DNA Editor. We found these existing open-source projects, did some modification and improvement, and integrated them into our Metlab.  
 +
                            </div>
 +
 
 +
                            <div class="excerpt">                            
 +
Now, we are still conducting more user surveys and looking for more practical needs. For these user demands, we will seek existing projects or develop more softwares, making our tool box more integrated.
 
                             </div>
 
                             </div>
 +
                             
 +
                        </article>
  
 +
                        <article class="cf" id="Contribution">
 +
                            <div class="entry-title">
 +
                                <div class="post-heading"  >Contribution</div>
 +
                            </div>
 
                             <div class="excerpt">
 
                             <div class="excerpt">
                              Finally, from some feedbacks on our project, we made <strong>SBML Differ</strong>. After comparison of two networks, <strong>SBML Differ</strong> aims to visualize the difference between biological models, providing users with a clearer picture about network similarity apart from their similarity coefficient.
+
                                The aim of our project has always been designing and developing useful programs for Synthetic Biology and iGEM community. Comparative analysis of biological network is very useful and indicative in synthetic biology and other related studies. Specially, it enables people to handle unknown organisms starting from known ones with alike networks. However, most current tools are only for a specific problem or application, and the existing algorithm is inefficient. In order to solve these problems, we launch METLAB, a general purpose alignment software.
                             </div>            
+
                            </div>
                         </article>                  
+
                       
 +
                            <div class="excerpt">
 +
                              Metlab is a suite of synthetic biology aided tools and mainly functions as BLAST for networks. Besides network alignment, users may visualize networks, compare and draw metabolites and design their wet-lab experiments.
 +
                            </div>
 +
 
 +
                          <div class="excerpt">
 +
                              Combining various commonly-used functions into the toolkit, our project will definitely come in handy to people studying synthetic biology and related fields.
 +
                             </div>
 +
                           
 +
                         </article>                                    
 
             </div>
 
             </div>
 +
 +
  <!-- SIDEBAR -->
 +
                    <aside id="sidebar" >
 +
                   
 +
                        <ul>
 +
                            <li class="block">
 +
                                <h4 class="heading" align="center">Design & Contribution</h4>
 +
                                <ul>
 +
                                    <li class="cat-item"><a href="#Design" >Design</a></li>
 +
                                    <li class="cat-item"><a href="#Contribution" >Contribution</a></li>
 +
                                 
 +
                                </ul>
 +
                            </li>
 +
                        </ul>
 +
                    </aside>
 +
                    <!-- ENDS SIDEBAR -->
 +
                   
 +
                </div>
 
 
 
         <!-- ENDS MAIN -->
 
         <!-- ENDS MAIN -->

Latest revision as of 08:07, 17 October 2018

Project —— Design & Contribution
Design
Since the birth of synthetic biology in 2000, metabolic engineering has made increasingly huge progress on high value-added natural products. The synthesis and construction of metabolic pathways play a fundamental role in microbiology, biochemistry, and many other relevant fields. In 2003, Jay Keasling’s team reconstructed the biological synthesis pathway of arteannuinic acid in E. coli, providing functional confirmation for this metabolic process. In recent years, researchers have engineered yeast to produce a variety of plant-based natural products. These pathways are likely to involve the introduction of many heterologous genes and numerous genetic modifications to increase productivity. In the biosynthesis of opioids in yeast, 17 enzymes from different plants, animals, and yeasts were encoded through synthetic biological way. Although there are several tools for scientists to analyze and select the potential genes of the designed pathway, these tools all focus on the one or two specific gene instead of the whole metabolic system. Therefore, what our team’s trying to do is making comparisons between the designed pathway we want to synthesize and the natural-existing pathways to make sure that the researchers can get the whole picture. In this way, scientists can learn more about molecular functions and biological process from an innovating aspect.
During the project, we had the pleasure to interview a PhD student in the university of Toronto. Based on his experiences working on biological metabolism, changing from several different software to visualize the network, do simulations or other studies, is quite inconvenient. Therefore, he suggested us to make our tool more handful for researches by integrating a few frequently-used functions together.
Besides, according to our survey among students in the biology department in our school, an integrated synthetic biology tool box was in urgent need. So we selected some commonly-needed functions to combine into the toolkit, containing SBML Drawer, SBML Differ, SMILES Drawer and DNA Editor. We found these existing open-source projects, did some modification and improvement, and integrated them into our Metlab.  
Now, we are still conducting more user surveys and looking for more practical needs. For these user demands, we will seek existing projects or develop more softwares, making our tool box more integrated.
Contribution
The aim of our project has always been designing and developing useful programs for Synthetic Biology and iGEM community. Comparative analysis of biological network is very useful and indicative in synthetic biology and other related studies. Specially, it enables people to handle unknown organisms starting from known ones with alike networks. However, most current tools are only for a specific problem or application, and the existing algorithm is inefficient. In order to solve these problems, we launch METLAB, a general purpose alignment software.
Metlab is a suite of synthetic biology aided tools and mainly functions as BLAST for networks. Besides network alignment, users may visualize networks, compare and draw metabolites and design their wet-lab experiments.
Combining various commonly-used functions into the toolkit, our project will definitely come in handy to people studying synthetic biology and related fields.

    Address

    NO. 800 Dongchuan Road, Minhang District, Shanghai, China

    Contact Us

    rockywei@sjtu.edu.cn

    SJTU-software