Difference between revisions of "Team:HUST-China/Comparison between PSB"

Line 242: Line 242:
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8d/T--HUST-China--2018-lanzao01.png"></i>
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8d/T--HUST-China--2018-lanzao01.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
                               <h3>1.<i>Synechocystis</i> </h3>
+
                               <h3>1.<i><i>Synechocystis</i></i> </h3>
 
                               <div  class="col-md-16" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/d/df/T--HUST-China--2018-model-new-c001.png"></div>
 
                               <div  class="col-md-16" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/d/df/T--HUST-China--2018-model-new-c001.png"></div>
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
                                 <p>These are the main differential equations of the Synechocystis part of the model. The parameters and variables above will be introduced below.</p>         
+
                                 <p>These are the main differential equations of the <i>Synechocystis</i> part of the model. The parameters and variables above will be introduced below.</p>         
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-16" >  
 
                               <div  class="col-md-16" >  
Line 251: Line 251:
 
                               </div>
 
                               </div>
 
                             <div class="col-md-12">
 
                             <div class="col-md-12">
                                 <p>These functions calculate the growth rate of Synechocystis. The two functions correspond to different concentrations of CO<sub>2</sub> in the solution.<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/3/36/T--HUST-China--2018-model-new-c003.png">and<img  style="vertical-align:middle;height:60px" src="https://static.igem.org/mediawiki/2018/b/bf/T--HUST-China--2018-model-new-c004.png">make the growth rate decline when the concentration of CO<sub>2</sub> in the solution is too high or too low. (David et al. 2015)<sup>[1]</sup>. From the same reference we get the relationship between the light intensity and the growth rate. The function<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/d/d8/T--HUST-China--2018-model-new-c005.png">is from another reference(XIONG et al. 2012) <sup>[2]</sup>. The parameter <img  style="vertical-align:middle;height:30px" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-model-new-c006.png"> the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild Synechocystis fit to the growth of edited ones in the reference (Henrike et al. 2010)<sup>[3]</sup>.</p>
+
                                 <p>These functions calculate the growth rate of <i>Synechocystis</i>. The two functions correspond to different concentrations of CO<sub>2</sub> in the solution.<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/3/36/T--HUST-China--2018-model-new-c003.png">and<img  style="vertical-align:middle;height:60px" src="https://static.igem.org/mediawiki/2018/b/bf/T--HUST-China--2018-model-new-c004.png">make the growth rate decline when the concentration of CO<sub>2</sub> in the solution is too high or too low. (David et al. 2015)<sup>[1]</sup>. From the same reference we get the relationship between the light intensity and the growth rate. The function<img  style="vertical-align:middle;height:50px" src="https://static.igem.org/mediawiki/2018/d/d8/T--HUST-China--2018-model-new-c005.png">is from another reference(XIONG et al. 2012) <sup>[2]</sup>. The parameter <img  style="vertical-align:middle;height:30px" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-model-new-c006.png"> the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild <i>Synechocystis</i> fit to the growth of edited ones in the reference (Henrike et al. 2010)<sup>[3]</sup>.</p>
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-16" >  
 
                               <div  class="col-md-16" >  
Line 257: Line 257:
 
                               </div>
 
                               </div>
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
                                   <p>This stands for the CO<sub>2</sub> consumed by each unit of Synechocystis.<img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/c/cc/T--HUST-China--2018-model-new-c008.png">is used for growth,<img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/1/1d/T--HUST-China--2018-model-new-c009.png">is used for lactate producing, and <img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/c/cb/T--HUST-China--2018-model-new-c010.png"> is used for sustaining its life.</p>
+
                                   <p>This stands for the CO<sub>2</sub> consumed by each unit of <i>Synechocystis</i>.<img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/c/cc/T--HUST-China--2018-model-new-c008.png">is used for growth,<img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/1/1d/T--HUST-China--2018-model-new-c009.png">is used for lactate producing, and <img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/c/cb/T--HUST-China--2018-model-new-c010.png"> is used for sustaining its life.</p>
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-3" >  
 
                               <div  class="col-md-3" >  
Line 263: Line 263:
 
                               </div>
 
                               </div>
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
                                   <p>The O<sub>2</sub> consuming is calculated by <img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/8/89/T--HUST-China--2018-model-new-c013.png"> because the photosynthesis and respiration in Synechocystis have the same stoichiometric ratio.</p>
+
                                   <p>The O<sub>2</sub> consuming is calculated by <img  style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/8/89/T--HUST-China--2018-model-new-c013.png"> because the photosynthesis and respiration in <i>Synechocystis</i> have the same stoichiometric ratio.</p>
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-6" >  
 
                               <div  class="col-md-6" >  
Line 269: Line 269:
 
                               </div>
 
                               </div>
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
                                   <p>This function shows the inhibit of CO<sub>2</sub> to the metabolism of Synechocystis. The lack of carbon source will not only effect the growth rate of the bacteria, but also reduce the produce rate of lactate.</p>
+
                                   <p>This function shows the inhibit of CO<sub>2</sub> to the metabolism of <i>Synechocystis</i>. The lack of carbon source will not only effect the growth rate of the bacteria, but also reduce the produce rate of lactate.</p>
 
                               </div>
 
                               </div>
 
                                
 
                                
Line 281: Line 281:
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/6/63/T--HUST-China--2018-zhaozehong01.png"></i>
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/6/63/T--HUST-China--2018-zhaozehong01.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
                               <h3>2.Rhodopseudomonas palustris</h3>
+
                               <h3>2.<i>Rhodopseudomonas palustris</i></h3>
 
                               <div  class="col-md-8">  
 
                               <div  class="col-md-8">  
 
                                   <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/92/T--HUST-China--2018-model-new-r001.png">
 
                                   <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/92/T--HUST-China--2018-model-new-r001.png">
 
                               </div>
 
                               </div>
 
                               <div class="col-md-12">   
 
                               <div class="col-md-12">   
                                 <p>These are the main differential equations about the modeling  part of the <I>Rhodopseudomonas palustris</I> (abbreviated as “Rps”). Through these differential equations, we can calculate the concentrations of Rps, carbon dioxide and lactate. The parameters and variables above will be introduced below.This part is similar to that of <I>Synechocystis</I>, because in our experiment, they are both used to provide lactate to <I>Shewanella</I> and have similar genetic modification.</p>
+
                                 <p>These are the main differential equations about the modeling  part of the <I><i>Rhodopseudomonas palustris</i></I> (abbreviated as “Rps”). Through these differential equations, we can calculate the concentrations of Rps, carbon dioxide and lactate. The parameters and variables above will be introduced below.This part is similar to that of <I><i>Synechocystis</i></I>, because in our experiment, they are both used to provide lactate to <I><i>Shewanella</i></I> and have similar genetic modification.</p>
 
                               </div>
 
                               </div>
 
                               <div  class="col-md-8" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/1/11/T--HUST-China--2018-model-new-r002.png">
 
                               <div  class="col-md-8" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/1/11/T--HUST-China--2018-model-new-r002.png">
 
                               </div>
 
                               </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
                               <p>The function calculates the growth rate of Rhodopseudomonas palustris. The function corresponds to different concentrations of CO<sub>2</sub> in the solution.<img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/7/7e/T--HUST-China--2018-model-new-r003.png"> makes the growth rate decline when the  concentration of CO<sub>2</sub> in the solution is too high. This is gotten from the reference (David et al. 2015)<sup>[1]</sup>.</p>
+
                               <p>The function calculates the growth rate of <i>Rhodopseudomonas palustris</i>. The function corresponds to different concentrations of CO<sub>2</sub> in the solution.<img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/7/7e/T--HUST-China--2018-model-new-r003.png"> makes the growth rate decline when the  concentration of CO<sub>2</sub> in the solution is too high. This is gotten from the reference (David et al. 2015)<sup>[1]</sup>.</p>
 
                           </div>
 
                           </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
Line 299: Line 299:
 
                           </div>
 
                           </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
                               <p>is from another reference (Xiong et al. 2012)<sup>[2]</sup>. The parameter  <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d4/T--HUST-China--2018-model-new-r005.png"> the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild <I>Rhodopseudomonas palustris</I> fit to the growth of edited ones in the reference ( Henrike et al. 2012 )<sup>[3]</sup>.</p>
+
                               <p>is from another reference (Xiong et al. 2012)<sup>[2]</sup>. The parameter  <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d4/T--HUST-China--2018-model-new-r005.png"> the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild <I><i>Rhodopseudomonas palustris</i></I> fit to the growth of edited ones in the reference ( Henrike et al. 2012 )<sup>[3]</sup>.</p>
 
                           </div>
 
                           </div>
 
                           <div  class="col-md-6 > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/1/19/T--HUST-China--2018-model-new-r006.png">
 
                           <div  class="col-md-6 > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/1/19/T--HUST-China--2018-model-new-r006.png">
 
                           </div>
 
                           </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
                               <p>This stands for the CO2 consumed by each unit of Rhodopseudomonas palustris. <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d7/T--HUST-China--2018-model-new-r007.png"> is  used for growth, <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/6/64/T--HUST-China--2018-model-new-r008.png"> is used for lactate producing, and  <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d3/T--HUST-China--2018-model-new-r009.png"> used for sustaining its life.</p>
+
                               <p>This stands for the CO2 consumed by each unit of <i>Rhodopseudomonas palustris</i>. <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d7/T--HUST-China--2018-model-new-r007.png"> is  used for growth, <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/6/64/T--HUST-China--2018-model-new-r008.png"> is used for lactate producing, and  <img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/d/d3/T--HUST-China--2018-model-new-r009.png"> used for sustaining its life.</p>
 
                           </div>
 
                           </div>
 
                           <div  class="col-md-4" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/c/c7/T--HUST-China--2018-model-new-r010.png">
 
                           <div  class="col-md-4" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/c/c7/T--HUST-China--2018-model-new-r010.png">
 
                           </div>
 
                           </div>
 
                           <div class="col-md-12">           
 
                           <div class="col-md-12">           
                               <p>This function shows the inhibit of CO<sub>2</sub> to the metabolism of <I>Rhodopseudomonas palustris</I>. The lack of carbon source will not only impact the growth rate of the bacteria, but also reduce the production rate of lactate.</p>
+
                               <p>This function shows the inhibit of CO<sub>2</sub> to the metabolism of <I><i>Rhodopseudomonas palustris</i></I>. The lack of carbon source will not only impact the growth rate of the bacteria, but also reduce the production rate of lactate.</p>
 
                           </div>
 
                           </div>
 
                          
 
                          
Line 319: Line 319:
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-xiwa01.png"></i>
 
                 <i class="icon-info-blocks material-icons hidden-xs"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-xiwa01.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
                         <h3>3. Shewanella</h3>
+
                         <h3>3. <i>Shewanella</i></h3>
                         <p>In generate, the three elements urgently needed to be modeled in Shewanella are the changes in biomass (Dry Weight, g/L), electricity production (mV), and lactate content (g/L) over time. Once the Shewanella modeling is completed, we only need to combine the model of Shewanella with the model of Synechocystis or Rhodopseudomonas palustris to determine which one is better to facilitate electricity produce. The process of deduction will write blow:</p>
+
                         <p>In generate, the three elements urgently needed to be modeled in <i>Shewanella</i> are the changes in biomass (Dry Weight, g/L), electricity production (mV), and lactate content (g/L) over time. Once the <i>Shewanella</i> modeling is completed, we only need to combine the model of <i>Shewanella</i> with the model of <i>Synechocystis</i> or <i>Rhodopseudomonas palustris</i> to determine which one is better to facilitate electricity produce. The process of deduction will write blow:</p>
 
                         <p>First, we need to simulate biomass function. Our biomass function is based on monod equation:</p>
 
                         <p>First, we need to simulate biomass function. Our biomass function is based on monod equation:</p>
 
                         <div class="col-md-5" style="text-align: center;">
 
                         <div class="col-md-5" style="text-align: center;">
Line 350: Line 350:
 
<img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-model-new-s017.png">
 
<img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-model-new-s017.png">
 
                                 <p>In this function Ox is oxidized type, and Red is reduced type.</p>
 
                                 <p>In this function Ox is oxidized type, and Red is reduced type.</p>
                                 <p>The Nernst equation is very clear and easy to use, but we have to add a Shewanella biomass factor to show the macroscopic electricity production. The lactic consuming value is closely related to the concentration of Shewanella. In addition, after the metabolic analysis of lactic in Shewanella, we promoted the function by modifying (or simplifying) the <img style="vertical-align:middle;height:30" src="https://static.igem.org/mediawiki/2018/7/78/T--HUST-China--2018-model-new-s005.png">  section. As a result, the electricity production function is:</p>
+
                                 <p>The Nernst equation is very clear and easy to use, but we have to add a <i>Shewanella</i> biomass factor to show the macroscopic electricity production. The lactic consuming value is closely related to the concentration of <i>Shewanella</i>. In addition, after the metabolic analysis of lactic in <i>Shewanella</i>, we promoted the function by modifying (or simplifying) the <img style="vertical-align:middle;height:30" src="https://static.igem.org/mediawiki/2018/7/78/T--HUST-China--2018-model-new-s005.png">  section. As a result, the electricity production function is:</p>
 
                         </div>
 
                         </div>
 
                                 <div class="col-md-8">
 
                                 <div class="col-md-8">
Line 357: Line 357:
 
                               <div class="col-md-12">
 
                               <div class="col-md-12">
 
<p>In this function,<img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/a/a5/T--HUST-China--2018-model-new-s007.png"></p>
 
<p>In this function,<img style="vertical-align:middle" src="https://static.igem.org/mediawiki/2018/a/a5/T--HUST-China--2018-model-new-s007.png"></p>
<p>The last work in Shewanella modeling is the lactic consuming simulation: </p>
+
<p>The last work in <i>Shewanella</i> modeling is the lactic consuming simulation: </p>
<p>The concentration of lactate dominates largely on electricity production. Similarly, with the inspiration of Monod equation, we notice that the concentration of lactate acid and Shewanella itself is in a positive correlation to lactic consuming rate. So we have summarized the lactic consuming equation:</p>
+
<p>The concentration of lactate dominates largely on electricity production. Similarly, with the inspiration of Monod equation, we notice that the concentration of lactate acid and <i>Shewanella</i> itself is in a positive correlation to lactic consuming rate. So we have summarized the lactic consuming equation:</p>
 
<img class="img-responsive" src="https://static.igem.org/mediawiki/2018/6/67/T--HUST-China--2018-model-new-s008.png">
 
<img class="img-responsive" src="https://static.igem.org/mediawiki/2018/6/67/T--HUST-China--2018-model-new-s008.png">
 
                             </div>       
 
                             </div>       
Line 378: Line 378:
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                         <h3>Design of MFC</h3>
 
                         <h3>Design of MFC</h3>
                         <p>We have designed a bipolar chamber MFC this year. Proton exchange membrane divided it into anode chamber and cathode chamber. Anode chamber containing S.oneidensis, nutrient substance(LB、lactate ) or other electrical producing microbes were sealed to prevent the entry of external oxygen. Considering safety and oxidation-reduction potential, we put ferric chloride solution in cathode chamber so that S.oneidensis can transfer electrons outside of their membranes by electron transport chain. Then electrons will reduce ferric ion into ferrous through carbon cloth and produce electricity.We recorded open circuit voltage curve and load voltage curve of MFCs in each different systems. Also, we have measured the biomass of each system in order to ensure whether the improved electricity could be attributed to more attached Shewanella cells on the anodes or the higher electroactivity of single cell.[11] </p>
+
                         <p>We have designed a bipolar chamber MFC this year. Proton exchange membrane divided it into anode chamber and cathode chamber. Anode chamber containing S.oneidensis, nutrient substance(LB、lactate ) or other electrical producing microbes were sealed to prevent the entry of external oxygen. Considering safety and oxidation-reduction potential, we put ferric chloride solution in cathode chamber so that S.oneidensis can transfer electrons outside of their membranes by electron transport chain. Then electrons will reduce ferric ion into ferrous through carbon cloth and produce electricity.We recorded open circuit voltage curve and load voltage curve of MFCs in each different systems. Also, we have measured the biomass of each system in order to ensure whether the improved electricity could be attributed to more attached <i>Shewanella</i> cells on the anodes or the higher electroactivity of single cell.[11] </p>
 
                         <div class="col-md-6 col-md-offset-2" style="text-align: center;">
 
                         <div class="col-md-6 col-md-offset-2" style="text-align: center;">
 
                             <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/85/T--HUST-China--2018-description-picture12.png.png">
 
                             <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/85/T--HUST-China--2018-description-picture12.png.png">
Line 386: Line 386:
 
                                 <p>Obviously, the ecological relationship between microorganisms is very complex. There is not only the competition between them for the nutrient, but also the regulation of metabolites among them including induction, transgenosis and synergistic metabolism. Besides, it has been found that the co-culture of microorganisms can improve the electric efficiency of Microbial Fuel Cell under certain conditions.  </p>
 
                                 <p>Obviously, the ecological relationship between microorganisms is very complex. There is not only the competition between them for the nutrient, but also the regulation of metabolites among them including induction, transgenosis and synergistic metabolism. Besides, it has been found that the co-culture of microorganisms can improve the electric efficiency of Microbial Fuel Cell under certain conditions.  </p>
 
                                 <p>Metabolites exchange is a common relationship in co-culturing. Therefore, we have designed a clear microbial metabolic pathway to achieve the conversion from light to electricity as well as used more potential symbiotic relationships between the flora to help improve the electricity production efficiency of MFC.</p>
 
                                 <p>Metabolites exchange is a common relationship in co-culturing. Therefore, we have designed a clear microbial metabolic pathway to achieve the conversion from light to electricity as well as used more potential symbiotic relationships between the flora to help improve the electricity production efficiency of MFC.</p>
                                   <p>By consulting literature, we found two kinds of microorganisms——Cyanobacteria and Rhodopseudomonas palustris, both of which can utilize light energy and provide lactate to S.oneidensis after doing molecular construction.  </p>
+
                                   <p>By consulting literature, we found two kinds of microorganisms——Cyanobacteria and <i>Rhodopseudomonas palustris</i>, both of which can utilize light energy and provide lactate to S.oneidensis after doing molecular construction.  </p>
 
                                     <p>In order to provide a basic growth environment, we mix the culture medium of different strains.(Please refer to our protocol section for the composition of the mediums.)</p>
 
                                     <p>In order to provide a basic growth environment, we mix the culture medium of different strains.(Please refer to our protocol section for the composition of the mediums.)</p>
 
                                  
 
                                  
Line 393: Line 393:
 
                              
 
                              
 
                         <div class="col-md-12">  
 
                         <div class="col-md-12">  
                                 <p class="red-content"><strong>Synechocystis PCC6803</strong></p>
+
                                 <p class="red-content"><strong><i>Synechocystis</i> PCC6803</strong></p>
                                 <p>Lactate produced by Synechocystis PCC6803 can be used as the optimal carbon source for Shewanella. At the same time, acetate produced by Shewanella can be used as the organic carbon source of Synechocystis PCC6803 to increase the lactate production. And the metabolite exchange of Synechocystis PCC6803 and Shewanella is the basis for our photoautotrophic MFC.[12]. </p>
+
                                 <p>Lactate produced by <i>Synechocystis</i> PCC6803 can be used as the optimal carbon source for <i>Shewanella</i>. At the same time, acetate produced by <i>Shewanella</i> can be used as the organic carbon source of <i>Synechocystis</i> PCC6803 to increase the lactate production. And the metabolite exchange of <i>Synechocystis</i> PCC6803 and <i>Shewanella</i> is the basis for our photoautotrophic MFC.[12]. </p>
                                   <p class="red-content"><strong>Rhodopseudomonas palustris</strong></p>
+
                                   <p class="red-content"><strong><i>Rhodopseudomonas palustris</i></strong></p>
                                     <p>We attempted to engineer Rhodopseudomonas palustris by synthetic biology to achieve the same or a better function of Synechococcus elongatus.</p>
+
                                     <p>We attempted to engineer <i>Rhodopseudomonas palustris</i> by synthetic biology to achieve the same or a better function of Synechococcus elongatus.</p>
                                     <p>In the preliminary experiment, we found that there may be more potential interactions in the co-culture of Rhodopseudomonas palustris and Shewanella, which can greatly improve the coulombic efficiency of our MFC (please refer our results section for more detials). This is an unexpected surprise for us, which improve to our confidence in the success of the project.</p>
+
                                     <p>In the preliminary experiment, we found that there may be more potential interactions in the co-culture of <i>Rhodopseudomonas palustris</i> and <i>Shewanella</i>, which can greatly improve the coulombic efficiency of our MFC (please refer our results section for more detials). This is an unexpected surprise for us, which improve to our confidence in the success of the project.</p>
 
                             </div>       
 
                             </div>       
 
                   </div>
 
                   </div>
Line 417: Line 417:
 
                 <p style="font-size:12px;"><span>[9] Jcat, http://www.jcat.de/#opennewwindow  </span></p>
 
                 <p style="font-size:12px;"><span>[9] Jcat, http://www.jcat.de/#opennewwindow  </span></p>
 
                 <p style="font-size:12px;"><span>[10] Genomic reconstruction of
 
                 <p style="font-size:12px;"><span>[10] Genomic reconstruction of
                 Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization PNAS February 24, 2009 106 (8) 2874-2879  </span></p>
+
                 <i>Shewanella</i> oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization PNAS February 24, 2009 106 (8) 2874-2879  </span></p>
                 <p style="font-size:12px;"><span>[11] Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR‑1  ACS Synth. Biol. 2018, 7, 885−895</span></p>
+
                 <p style="font-size:12px;"><span>[11] Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of <i>Shewanella</i> oneidensis MR‑1  ACS Synth. Biol. 2018, 7, 885−895</span></p>
                 <p style="font-size:12px;"><span>[12]Varman A. M., Yu Y., You L. & Tang Y. J. Photoautotrophic production of d-lactate in an engineered cyanobacterium. Microb. Cell Fact. 12, 117 (2013).  </span></p>
+
                 <p style="font-size:12px;"><span>[12]Varman A. M., Yu Y., You L. & Tang Y. J. Photoautotrophic production of d-lactate in an engineered cyanobacterium. Microb. Cell Fact. 12, 117 (2013). </span></p>
 
               </div>
 
               </div>
 
             </div>
 
             </div>

Revision as of 18:24, 17 October 2018

HillSide Multi purpose HTML5 Template

Comparison_between_PSB

functions

1.Synechocystis

These are the main differential equations of the Synechocystis part of the model. The parameters and variables above will be introduced below.

These functions calculate the growth rate of Synechocystis. The two functions correspond to different concentrations of CO2 in the solution.andmake the growth rate decline when the concentration of CO2 in the solution is too high or too low. (David et al. 2015)[1]. From the same reference we get the relationship between the light intensity and the growth rate. The functionis from another reference(XIONG et al. 2012) [2]. The parameter the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild Synechocystis fit to the growth of edited ones in the reference (Henrike et al. 2010)[3].

This stands for the CO2 consumed by each unit of Synechocystis.is used for growth,is used for lactate producing, and is used for sustaining its life.

The O2 consuming is calculated by because the photosynthesis and respiration in Synechocystis have the same stoichiometric ratio.

This function shows the inhibit of CO2 to the metabolism of Synechocystis. The lack of carbon source will not only effect the growth rate of the bacteria, but also reduce the produce rate of lactate.

2.Rhodopseudomonas palustris

These are the main differential equations about the modeling part of the Rhodopseudomonas palustris (abbreviated as “Rps”). Through these differential equations, we can calculate the concentrations of Rps, carbon dioxide and lactate. The parameters and variables above will be introduced below.This part is similar to that of Synechocystis, because in our experiment, they are both used to provide lactate to Shewanella and have similar genetic modification.

The function calculates the growth rate of Rhodopseudomonas palustris. The function corresponds to different concentrations of CO2 in the solution. makes the growth rate decline when the concentration of CO2 in the solution is too high. This is gotten from the reference (David et al. 2015)[1].

From the same reference we get the relationship between the light intensity and the growth rate. The function

is from another reference (Xiong et al. 2012)[2]. The parameter the decline of the growth rate caused by gene editing. This parameter is introduced to make the growth model of wild Rhodopseudomonas palustris fit to the growth of edited ones in the reference ( Henrike et al. 2012 )[3].

This stands for the CO2 consumed by each unit of Rhodopseudomonas palustris. is used for growth, is used for lactate producing, and used for sustaining its life.

This function shows the inhibit of CO2 to the metabolism of Rhodopseudomonas palustris. The lack of carbon source will not only impact the growth rate of the bacteria, but also reduce the production rate of lactate.

3. Shewanella

In generate, the three elements urgently needed to be modeled in Shewanella are the changes in biomass (Dry Weight, g/L), electricity production (mV), and lactate content (g/L) over time. Once the Shewanella modeling is completed, we only need to combine the model of Shewanella with the model of Synechocystis or Rhodopseudomonas palustris to determine which one is better to facilitate electricity produce. The process of deduction will write blow:

First, we need to simulate biomass function. Our biomass function is based on monod equation:

In this function, μ is specific growth rate of biomass.

Because there are two important growth factors in our model: lactate and oxygen content, we need some modifying tasks in this model. Noticing that the concentration of oxygen and lactate are both promoting biomass growth, with the inspiration of monod equation, we take the two factors into consideration so the function changes to:

In this function, cLac is concentration of lactate.

After this, we realized that a factor about oxygen competition is needed to add in the function. So we import a parameter to solve this problem, the function is modified to:

Taking the efficiency ratio of aerobic and anaerobic respiration (19:1) into consideration, we calculated two parameters:

The two parameters are used in our electricity production simulation:

The basic function is the famous Nernst equation:

In this function Ox is oxidized type, and Red is reduced type.

The Nernst equation is very clear and easy to use, but we have to add a Shewanella biomass factor to show the macroscopic electricity production. The lactic consuming value is closely related to the concentration of Shewanella. In addition, after the metabolic analysis of lactic in Shewanella, we promoted the function by modifying (or simplifying) the section. As a result, the electricity production function is:

In this function,

The last work in Shewanella modeling is the lactic consuming simulation:

The concentration of lactate dominates largely on electricity production. Similarly, with the inspiration of Monod equation, we notice that the concentration of lactate acid and Shewanella itself is in a positive correlation to lactic consuming rate. So we have summarized the lactic consuming equation:

Design of MFC

We have designed a bipolar chamber MFC this year. Proton exchange membrane divided it into anode chamber and cathode chamber. Anode chamber containing S.oneidensis, nutrient substance(LB、lactate ) or other electrical producing microbes were sealed to prevent the entry of external oxygen. Considering safety and oxidation-reduction potential, we put ferric chloride solution in cathode chamber so that S.oneidensis can transfer electrons outside of their membranes by electron transport chain. Then electrons will reduce ferric ion into ferrous through carbon cloth and produce electricity.We recorded open circuit voltage curve and load voltage curve of MFCs in each different systems. Also, we have measured the biomass of each system in order to ensure whether the improved electricity could be attributed to more attached Shewanella cells on the anodes or the higher electroactivity of single cell.[11]

Co-culture

Obviously, the ecological relationship between microorganisms is very complex. There is not only the competition between them for the nutrient, but also the regulation of metabolites among them including induction, transgenosis and synergistic metabolism. Besides, it has been found that the co-culture of microorganisms can improve the electric efficiency of Microbial Fuel Cell under certain conditions.

Metabolites exchange is a common relationship in co-culturing. Therefore, we have designed a clear microbial metabolic pathway to achieve the conversion from light to electricity as well as used more potential symbiotic relationships between the flora to help improve the electricity production efficiency of MFC.

By consulting literature, we found two kinds of microorganisms——Cyanobacteria and Rhodopseudomonas palustris, both of which can utilize light energy and provide lactate to S.oneidensis after doing molecular construction.

In order to provide a basic growth environment, we mix the culture medium of different strains.(Please refer to our protocol section for the composition of the mediums.)

Synechocystis PCC6803

Lactate produced by Synechocystis PCC6803 can be used as the optimal carbon source for Shewanella. At the same time, acetate produced by Shewanella can be used as the organic carbon source of Synechocystis PCC6803 to increase the lactate production. And the metabolite exchange of Synechocystis PCC6803 and Shewanella is the basis for our photoautotrophic MFC.[12].

Rhodopseudomonas palustris

We attempted to engineer Rhodopseudomonas palustris by synthetic biology to achieve the same or a better function of Synechococcus elongatus.

In the preliminary experiment, we found that there may be more potential interactions in the co-culture of Rhodopseudomonas palustris and Shewanella, which can greatly improve the coulombic efficiency of our MFC (please refer our results section for more detials). This is an unexpected surprise for us, which improve to our confidence in the success of the project.