Difference between revisions of "Team:IIT Delhi/Model"

Line 925: Line 925:
 
 
 
</section>
 
</section>
 +
<header class="major">
 +
       
 +
       
 +
            <h2 class="h2font">Model for<br> Unregulated Gene Expression</h2>
  
<div class="bgimg-1">
+
            <p> &#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
  <div class="caption">
+
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
    <span class="border" >Text anyone?</span>
+
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
  </div>
+
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
</div>
+
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
 
+
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
+
</p>
 
+
<h2 id="pfont">A model for this simple system shown above can then be written, keeping the assumptions in mind. To start with, we can consider the two variables that are of importance to us in determining the level of gene expression. These are the mRNA and protein levels (since the DNA levels in a cell are assumed to be constant, they are not of interest).  
<div style="color: #777;background-color:white;text-align:center;padding:50px 80px;text-align: justify;">
+
+
  <p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814001 = pLTL
+
    <br>
+
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;"> The pLTL (Lac-Tet-Lac) is a hybrid promoter. It is a promoter composed of the operator sequences of pTet and the pLac promoter. There are multiple benefits of using the pLTL promoter.
+
</p>
+
   
+
      <ul style="font-size:20px;" >
+
      <li style="font-family: 'Lato', sans-serif;font-weight:400;">The hybrid pLTL shows almost complete repression on being repressed, and on induction (by IPTG and/or aTc), the hybrid pLTL promoter shows a 1.4-2 times higher expression.</li>
+
      <li style="font-family: 'Lato', sans-serif;font-weight:400;">The hybrid pLTL promoter also permits flexible gene expression because it can be utilized under either or both repression controls (LacI and TetR) simultaneously.</li>
+
   
+
    </ul>
+
 
<br>
 
<br>
 
+
Therefore, let us write the differential equation for mRNA first -  
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814008 = rrnB T1 Terminator + T7Te Terminator
+
    <br>
+
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;"> Our part is double terminator composed of rrnB T1 Terminator(BBa B0010) and T7 Te Terminator(BBa B0012). Both of these are forward terminators that are extensively used in E. coli.
+
</p>
+
<br>
+
 
+
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814009 = mKate2
+
 
+
    <br>
+
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;"> Mkate2 - mKate2 is a red fluorescent protein derived from Entacmaea quadricolor.  It possesses fluorescence with excitation maxima at 588 nm and emission maxima at 588 and 633 nm, mKate2 is almost 3-fold brighter than mKate. mKate2 can be used in  labelling applications along with blue, cyan, green, yellow, and red fluorescent dyes. Its high pH-stability with pKa=5.4 makes it useful for imaging in acidic organelles, such as late and recycling endosomes and lysosomes.
+
 
+
</p>
+
 
<br>
 
<br>
 
+
mRNA is produced from DNA, and degraded spontaneously. Therefore, at any instant of time, the rate of change of mRNA can be written as -  
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814010 = rrnB T1 Terminator
+
<br><br>
 
+
<img src = "https://static.igem.org/mediawiki/2017/4/45/T--IIT_Delhi--picture3.png" style='border:3px solid #000000'><br>
    <br>
+
      </p>
+
    <br>
+
</div>
+
 
+
<div class="bgimg-2">
+
  <div class="caption">
+
    <span class="border" >Text anyone?</span>
+
  </div>
+
</div>
+
 
+
<div style="position:relative;">
+
  <div style="color: #777;background-color:white;text-align:center;padding:50px 80px;text-align: justify;">
+
 
+
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814007 = sfGFP_ssrA
+
 
+
 
+
    <br>
+
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">Our part consists of sfGFP appended with a ssrA(LVA) deg-tag. It has been codon optimised for E. coli.  This part is useful as it has high intensity as compared to other gfp variants as well as faster degradation rates and shorter reporter lifetimes.
+
 
+
 
+
</p>
+
 
+
<p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">Superfolder GFP is a basic (constitutively fluorescent) green fluorescent protein derived from Aequorea victoria. It has an emission wavelength of 510 nm and excitation wavelength of 485nm. It has a robust folding characteristic. The superfolder mutations also make the folding of GFP tolerant of mutations that would otherwise reduce the folding yield of GFP.
+
 
+
 
+
</p>
+
 
+
<p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">Our ssrA degtag is the gfp(LVA) that has a single (A → G) point mutation in nucleotide 349, resulting in an Asp117 → Gly117 (D117G) amino acid change. This point mutation does not appear to change the fluorescence spectrum of gfp(LVA). The LVA tag has been reported to lead to fast protein degradation, degrading GFP with rate -0.018 per minute. This corresponds to in vivo half-lives of mature Gfp(LVA) of approximately 40 min.
+
 
+
 
+
 
+
</p>
+
 
+
<p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">References</p>
+
<ol style="font-size: 20px;">
+
 
+
<li style="font-family: 'Lato', sans-serif;font-weight:400;">Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. Nature biotechnology. 2006 Jan;24(1):79.</li>
+
 
+
<li style="font-family: 'Lato', sans-serif;font-weight:400;">Andersen, J. B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–6 (1998).
+
</li>  
+
 
+
 
+
  </ol>
+
 
+
 
<br>
 
<br>
 +
Note, that here, we have not written the reaction where mRNA is being converted to protein,  since mRNA is not actually being consumed there or being produced. 1 molecule of mRNA simply produces 1 molecule of protein (assumption). <br>
  
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814011 = attP TP901-1
+
Further, it has to be noted that the [DNA] and [mRNA] terms appear in the equation since in writing the model, we assume that mass action kinetics are valid, ie, the rate of the reaction is equal to the rate constant times the concentration of the reactant, raised to a power equal to the number of molecules of the reactant. <br>
  
 
+
Now, we know that the DNA concentration remains constant and does not change over time. Therefore, the [DNA] term can be included in the constant itself, to give <br><br>
    <br>
+
<img src = "https://static.igem.org/mediawiki/2017/3/3c/T--IIT_Delhi--picture4.png" style='border:3px solid #000000'><br>
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">AttP TP901-1 - It is the AttP site of TP901-1 integrase (serine based recombinase enzyme). TP901-1 integrase is an enzyme that has been isolated from TP901-1 phage. It is responsible for catalysing site-specific recombination at AttP and AttB sites. The recombination mechanism depends on the orientation of the AttP and AttB sites. These enzymes help the virus integrate its DNA into the bacterial genome. TP901-1 is widely used in the construction of logic gates and modification of DNA sequences.
+
 
+
 
+
</p>
+
 
+
 
<br>
 
<br>
 +
Now, the dynamics of the protein can be similarly written as <br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/7/77/T--IIT_Delhi--picture5.png" style='border:3px solid #000000'><br><br>
  
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814012 = BxbI Integrase + ssrA(LVA) deg tag
+
And that is it! We’ve just written down our first model, for a gene being expressed from a constitutive promoter. Now that we have our model, we can simulate these and find out the dynamics. <br>
  
 +
Simulation basically means solving the differential equations to get the variation of the component (mRNA, protein) with time. This can be done by hand for the equations above. However, as models get more complex, implicit equations appear, which are much more difficult to solve by hand. Thus, it is essential to get the hang of modelling software such as MATLAB or R, which solve differential equations and simulate the model for a specified period of time. <br>
  
    <br>
+
Thus, we write down the model on MATLAB here, and simulate it for a time period of 200 time units. The values of the constants used for alpha, gamma etc and the MATLAB code for the same can be found on the github library link given below. The plot obtained is as follows - <br><br>
      </p>
+
<img src = "https://static.igem.org/mediawiki/2017/8/80/T--IIT_Delhi--picture6.jpeg" style='border:3px solid #000000' width="90%"><br><br>
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">BxbI Integrase triggers attP × attB recombination. The product of attP × attB recombination is an integrated prophage flanked by two new recombination sites, attL and attR, each containing half sites derived from attP and attB. In the absence of accessory factors the integrases mediate unidirectional recombination between attP and attB with greater than 80% efficiency. In the presence of a phage-encoded accessory protein, the recombination directionality factor (RDF) the attP × attB recombination is inhibited and the attL × attR recombination is stimulated.
+
Bxb1 integrase yields approximately two-fold more recombinants  and displays about two fold less damage to the recombination sites than other phage-encoded serine integrases.
+
  
Our BxbI Integrase has a ssrA deg tag attached to it for faster degradation rates.
+
Changing the parameters for production and degradation rates can give different kinds of graphs, and can be explored by simply changing the values of alpha, gamma, K etc in the model and simulating the same. However, as we can see here, the mRNA and protein levels both rise to a certain fixed value. This is known as the steady state value.  
 
+
 
+
 
+
</p>
+
+
 
<br>
 
<br>
 +
However, we can make a further simplification in this model. Generally, the mRNA dynamics are faster than the protein dynamics. This means that mRNA levels approach their steady state value faster than proteins do. Therefore, we can say make the assumption and further simplification that before the protein dynamics start to come into play, the date of change of mRNA is zero. This is known as the “quasi steady state assumption”.<br><br>
  
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814013 = attB TP901-1
+
Therefore at steady state,
 +
<br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/b/b6/T--IIT_Delhi--picture7.png" style='border:3px solid #000000'><br><br>
  
 +
Thus, <br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/f/fc/T--IIT_Delhi--picture8.png" style='border:3px solid #000000'  solid #000000'><br><br>
 +
Now, we can replace the value of [mRNA] in equation (2) with the value given above, to get - <br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/e/ea/T--IIT_Delhi--picture9.png" style='border:3px solid #000000'><br><br>
  
    <br>
+
We can now try to simulate and plot the graph for the protein levels, and compare the time series of the two models - <br><br>
      </p>
+
<center><img src = "https://static.igem.org/mediawiki/2017/9/93/T--IIT_Delhi--picture10.png" style='border:3px solid #000000' width="90%"></center><br><br>
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">AttB TP901-1 -  It is the AttB site of TP901-1 integrase (serine based recombinase enzyme). TP901-1 integrase is an enzyme that has been isolated from TP901-1 phage. It is responsible for catalysing site-specific recombination at AttP and AttB sites. The recombination mechanism depends on the orientation of the AttP and AttB sites. These enzymes help the virus integrate its DNA into the bacterial genome. TP901-1 is widely used in the construction of logic gates and changing DNA sequence.
+
  
 +
Therefore, we can see that by making the assumption that mRNA is already at steady state at the start of time, the protein levels begin to rise faster than the earlier model. However, the steady state value for protein remains the same. This is because we have only simplified the model by changing the time scale and assuming that at the given time scale, mRNA dynamics are at steady state. We have not changed the steady state per se.
  
  
</p>
 
 
<br>
 
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814014 = complement of B0034, RBS on the antisense strand, twin exists
 
    <br>
 
      </p>
 
<br>
 
  
  
  </div>
+
</h2>
</div>
+
          </header>
  
<div class="bgimg-3">
 
  <div class="caption">
 
    <span class="border">Some random text </span>
 
  </div>
 
</div>
 
  
<div style="position:relative;">
+
<header class="major">
  <div style="color: #777;background-color:white;text-align:center;padding:50px 80px;text-align: justify;">
+
       
   
+
       
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814015 = pLac(lambda) hybrid
+
            <h2 class="h2font">Model for<br> Regulated Gene Expression</h2>
  
 +
            <p> &#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
 +
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
 +
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
 +
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
 +
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
 +
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;
 +
</p>
 +
<h2 id="pfont">
  
    <br>
+
Regulation of gene expression involves changing the expression of protein or RNA produced by a particular gene. Various mechanisms exist, for doing the same allowing for control at various stages of the expression of the gene. For instance, if the control/regulation is such that it does not allow transcription to happen, it is termed as transcriptional control. Similarly, translational, post translational and several other layers of control exist. <br>
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">pLac - Lambda hybrid - is a hybrid promoter consisting of Lac and Lambda operator sites in the core region. This hybrid promoter can be induced in the presence of IPTG or
+
</p>
+
<br>
+
  
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814017 = attP Bxb1
+
The simplest and most commonly employed mode of regulation is the transcriptional control by repressor proteins. These are protein molecules that can bind to specific “operator” sites in the promoter region, and stop the promoter to recruit RNA polymerase successfully, thereby inhibiting transcription. Common examples of such systems are LacI, TetR and cI, which can inhibit transcription from the pLac, pTet and pCI promoter respectively. This mode of control is also commonly referred to as repression, and should not be confused with inhibition, which is a separate control mechanism.<br>
  
 +
Here, let us try to model what regulated gene expression looks like, by looking at a typical example of transcriptional activation. Consider the following case - <br><br>
  
 +
<img src = "https://static.igem.org/mediawiki/2017/6/65/T--IIT_Delhi--picture11.png" style='border:3px solid #000000'><br><br>
  
    <br>
+
We have a protein X, that can exist in two states, the native (inactive) state X, and an active form X*. The molecule X* can bind to the promoter (say P), and promote transcription of the gene by helping the promoter to recruit RNA polymerase.
      </p>
+
<br><br>
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">AttP Bxb1 - It is the AttP site of Bxb1 integrase (Serine based recombinase). Bxb1 integrase carries out site-specific recombination by catalysing unidirectional recombination to produce AttL and AttR sites from AttP and AttB. This switching capacity allows them to be used in the design of toggle switches.
+
Lets look at another case, where we have transcriptional repression -<br><br>
  
 +
<img src = "https://static.igem.org/mediawiki/2017/2/2b/T--IIT_Delhi--picture12.png" width="100%"><br><br>
  
</p>
+
Here we are given 2 proteins, A and B. The protein A is produced and degraded, and is a transcriptional repressor for the gene B. A has its own production and degradation rates, described by alpha and gamma, and B also has its own production and degradation rates, given by beta and gamma respectively. Further, DA and Do represent the two states that the DNA region of the promoter PB can have. DA represents the state where A is bound to the operator, and Do represents the state where A is unbound.
 
<br>
 
<br>
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814018 = attB Bxb1
+
The system can be represented by a set of reactions as follows –<br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/9/92/T--IIT_Delhi--picture13.png" style='border:3px solid #000000'><br><br>
  
 +
Based on these reactions, we can write the mass action model for the system. This can be represented by the following differential equations –<br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/5/52/T--IIT_Delhi--picture14.png" style='border:3px solid #000000'><br><br>
  
    <br>
+
Further, we have a 5th equation in the model, which is based on the conservation of DNA. Since all of the DNA of the promoter can either be bound by transcription factor A (DA state) or be unbound (Do state), therefore, the total DNA (DT), at any time, can be represented as –<br><br>
      </p>
+
<img src = "https://static.igem.org/mediawiki/2017/5/52/T--IIT_Delhi--picture15.png" style='border:1px solid #000000'><br><br>
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">AttB Bxb1 - It is the AttB site of Bxb1 integrase (Serine based recombinase). Bxb1 integrase carries out site-specific recombination by catalysing unidirectional recombination to produce AttL and AttR sites from AttP and AttB. This switching capacity allows them to be used in the design of logic gates.
+
  
 +
Thus, the model of the system, based on mass action kinetics and conservation relations can be represented by<br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/b/b4/T--IIT_Delhi--picture16.png" style='border:3px solid #000000'><br><br>
  
</p>
+
Note that in this model, we have taken the rate of change of Do and DA as well, which are DNA molecules. This is because here the DNA concentration also changes because the DNA switches states.
<br>  
+
<br><br>
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814019 = P7 Promoter
+
Now, solving this model and simulating, we get the following results - <br><br>
 
+
<img src = "https://static.igem.org/mediawiki/2017/e/ec/T--IIT_Delhi--picture17.png" style='border:3px solid #000000'><br><br>
 
+
<img src = "https://static.igem.org/mediawiki/2017/f/fc/T--IIT_Delhi--picture18.jpg" style='border:3px solid #000000' width="90%"><br><br>
 
+
 
+
    <br>
+
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">Constitutive P7 promoter - It is the complement of the constitutive P7 promoter so as to initiate transcription in the reverse direction.
+
 
+
</p>
+
 
+
<br>
+
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814021 = BxbI-Xis  + ssrA(LVA) deg tag------------
+
 
+
 
+
    <br>
+
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">Xis-BxbI_ssrA deg tag - Consists of bxb1 excisionase followed by ssrA degradation tag. Bxb1-Xis  catalyses the conversion of AttL and AttR sites to AttP and AttB sites when expressed with Bxb1 integrase, thereby reverting the recombination caused by integrase. ssrA deg tag degrades the Bxb1-Xis formed as an increase in the amount of excisionase renders the system inefficient. This property allows Bxb1 to be used in the construction of logic gates.
+
</p>
+
 
+
<br>
+
 
+
<p style="font-size: 30px; font-family: 'Roboto', sans-serif;font-weight:700;">BBa_K2814022 = attB BxbI (reverse orientation)
+
 
+
 
+
    <br>
+
      </p>
+
      <p style="font-size:20px;font-family: 'Lato', sans-serif;font-weight:400;">AttB-BxbI (Reverse Orientation) - Contains AttB site of Bxb1 integrase in the reverse orientation (Reverse of  BBa_K2814018). Bxb1 integrase carries out site-specific recombination by catalysing unidirectional recombination to produce AttL and AttR sites from AttP and AttB. This switching capacity allows them to be used in the design of logic gates.
+
 
+
</p>
+
 
+
<br>
+
  
 +
From the above results, we can see that the time taken for achieving steady state for all the variables (A, Do, DA and B) is more or less similar, and takes about 4-5 hours. This goes against the intuition that the binding and unbinding happens faster, as compared to the production of A and B, which should take a larger time. We see that this does happen, when we run the system of equations for α = 100 nM/hr (results not shown). Thus, the time scale separations become more prominent as the value of α increases (time scale separation was further more prominent for α = 500 nM/hr).
 +
<br><br>
 +
Further, upon varying the values of k1 and k2 by 100 fold, we see the following –<br><br>
 +
<img src = "https://static.igem.org/mediawiki/2017/9/92/T--IIT_Delhi--picture19.png" style='border:3px solid #000000' width="90%"><br><br>
  
  </div>
+
In all of these plots, data1, data2 and data3 represent k1 = 0.01, 1 and 100 respectively. We see that on decreasing the value of k1, the effect on the steady state values is not significant. On the other hand, increasing k1 by 100 fold changes the steady state values, and brings down the level of B ultimately produced at steady state. This is because if k1 is high, that means that more A binds to the promoter of B, repressing it. Therefore, a lower steady state level of B is observed.
</div>
+
  
 +
</h2>
 +
</header>
 
     <!--/**/-->
 
     <!--/**/-->
  

Revision as of 21:37, 17 October 2018

iGEM IIT Delhi

Model for
Unregulated Gene Expression

                                                                                                                                                                                                                 

A model for this simple system shown above can then be written, keeping the assumptions in mind. To start with, we can consider the two variables that are of importance to us in determining the level of gene expression. These are the mRNA and protein levels (since the DNA levels in a cell are assumed to be constant, they are not of interest).
Therefore, let us write the differential equation for mRNA first -
mRNA is produced from DNA, and degraded spontaneously. Therefore, at any instant of time, the rate of change of mRNA can be written as -



Note, that here, we have not written the reaction where mRNA is being converted to protein, since mRNA is not actually being consumed there or being produced. 1 molecule of mRNA simply produces 1 molecule of protein (assumption).
Further, it has to be noted that the [DNA] and [mRNA] terms appear in the equation since in writing the model, we assume that mass action kinetics are valid, ie, the rate of the reaction is equal to the rate constant times the concentration of the reactant, raised to a power equal to the number of molecules of the reactant.
Now, we know that the DNA concentration remains constant and does not change over time. Therefore, the [DNA] term can be included in the constant itself, to give



Now, the dynamics of the protein can be similarly written as



And that is it! We’ve just written down our first model, for a gene being expressed from a constitutive promoter. Now that we have our model, we can simulate these and find out the dynamics.
Simulation basically means solving the differential equations to get the variation of the component (mRNA, protein) with time. This can be done by hand for the equations above. However, as models get more complex, implicit equations appear, which are much more difficult to solve by hand. Thus, it is essential to get the hang of modelling software such as MATLAB or R, which solve differential equations and simulate the model for a specified period of time.
Thus, we write down the model on MATLAB here, and simulate it for a time period of 200 time units. The values of the constants used for alpha, gamma etc and the MATLAB code for the same can be found on the github library link given below. The plot obtained is as follows -



Changing the parameters for production and degradation rates can give different kinds of graphs, and can be explored by simply changing the values of alpha, gamma, K etc in the model and simulating the same. However, as we can see here, the mRNA and protein levels both rise to a certain fixed value. This is known as the steady state value.
However, we can make a further simplification in this model. Generally, the mRNA dynamics are faster than the protein dynamics. This means that mRNA levels approach their steady state value faster than proteins do. Therefore, we can say make the assumption and further simplification that before the protein dynamics start to come into play, the date of change of mRNA is zero. This is known as the “quasi steady state assumption”.

Therefore at steady state,



Thus,



Now, we can replace the value of [mRNA] in equation (2) with the value given above, to get -



We can now try to simulate and plot the graph for the protein levels, and compare the time series of the two models -



Therefore, we can see that by making the assumption that mRNA is already at steady state at the start of time, the protein levels begin to rise faster than the earlier model. However, the steady state value for protein remains the same. This is because we have only simplified the model by changing the time scale and assuming that at the given time scale, mRNA dynamics are at steady state. We have not changed the steady state per se.

Model for
Regulated Gene Expression

                                                                                                                                                                                                                 

Regulation of gene expression involves changing the expression of protein or RNA produced by a particular gene. Various mechanisms exist, for doing the same allowing for control at various stages of the expression of the gene. For instance, if the control/regulation is such that it does not allow transcription to happen, it is termed as transcriptional control. Similarly, translational, post translational and several other layers of control exist.
The simplest and most commonly employed mode of regulation is the transcriptional control by repressor proteins. These are protein molecules that can bind to specific “operator” sites in the promoter region, and stop the promoter to recruit RNA polymerase successfully, thereby inhibiting transcription. Common examples of such systems are LacI, TetR and cI, which can inhibit transcription from the pLac, pTet and pCI promoter respectively. This mode of control is also commonly referred to as repression, and should not be confused with inhibition, which is a separate control mechanism.
Here, let us try to model what regulated gene expression looks like, by looking at a typical example of transcriptional activation. Consider the following case -



We have a protein X, that can exist in two states, the native (inactive) state X, and an active form X*. The molecule X* can bind to the promoter (say P), and promote transcription of the gene by helping the promoter to recruit RNA polymerase.

Lets look at another case, where we have transcriptional repression -



Here we are given 2 proteins, A and B. The protein A is produced and degraded, and is a transcriptional repressor for the gene B. A has its own production and degradation rates, described by alpha and gamma, and B also has its own production and degradation rates, given by beta and gamma respectively. Further, DA and Do represent the two states that the DNA region of the promoter PB can have. DA represents the state where A is bound to the operator, and Do represents the state where A is unbound.
The system can be represented by a set of reactions as follows –



Based on these reactions, we can write the mass action model for the system. This can be represented by the following differential equations –



Further, we have a 5th equation in the model, which is based on the conservation of DNA. Since all of the DNA of the promoter can either be bound by transcription factor A (DA state) or be unbound (Do state), therefore, the total DNA (DT), at any time, can be represented as –



Thus, the model of the system, based on mass action kinetics and conservation relations can be represented by



Note that in this model, we have taken the rate of change of Do and DA as well, which are DNA molecules. This is because here the DNA concentration also changes because the DNA switches states.

Now, solving this model and simulating, we get the following results -





From the above results, we can see that the time taken for achieving steady state for all the variables (A, Do, DA and B) is more or less similar, and takes about 4-5 hours. This goes against the intuition that the binding and unbinding happens faster, as compared to the production of A and B, which should take a larger time. We see that this does happen, when we run the system of equations for α = 100 nM/hr (results not shown). Thus, the time scale separations become more prominent as the value of α increases (time scale separation was further more prominent for α = 500 nM/hr).

Further, upon varying the values of k1 and k2 by 100 fold, we see the following –



In all of these plots, data1, data2 and data3 represent k1 = 0.01, 1 and 100 respectively. We see that on decreasing the value of k1, the effect on the steady state values is not significant. On the other hand, increasing k1 by 100 fold changes the steady state values, and brings down the level of B ultimately produced at steady state. This is because if k1 is high, that means that more A binds to the promoter of B, repressing it. Therefore, a lower steady state level of B is observed.

Contact us

Address

Undergraduate Laboratory
Department of Biotechnology and Biochemical Engineering, IIT Delhi