Difference between revisions of "Team:Tongji China/Design"

 
(58 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{Tongji_China/Head_N_Prefix}}
 
{{Tongji_China/Head_N_Prefix}}
<html>
+
{{Tongji_China/userDefault}}
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Template:Tongji_China/userDefault?action=raw&ctype=text/css">
+
</html>
+
 
{{Tongji_China/Head_N_Suffix}}
 
{{Tongji_China/Head_N_Suffix}}
 
{{Tongji_China/Header_N}}
 
{{Tongji_China/Header_N}}
Line 14: Line 12:
 
<body>
 
<body>
 
<div class="background">
 
<div class="background">
 +
<div class="content">
 
<div class="title">
 
<div class="title">
 
Project
 
Project
Line 22: Line 21:
 
<div class="title_2">
 
<div class="title_2">
 
Design
 
Design
</div>
+
</div><br>
<div class="content"><br>
+
                        <div width="100%"><p style="text-align:center"><a href="#PHASE1" class="test_a"><img src="https://static.igem.org/mediawiki/2018/e/e8/T--Tongji_China--picture-design-3.png"  width="12%" height="10%" /></a>&emsp;<img src="https://static.igem.org/mediawiki/2018/e/ed/T--Tongji_China--picture-design-4.png"  width="5%" height="5%" />&emsp;<a href="#phase2" class="test_a"><img src="https://static.igem.org/mediawiki/2018/e/e3/T--Tongji_China--picture-design-5.png"  width="17%" height="10%" style="margin-top:1.9em" /></a>&emsp;<img src="https://static.igem.org/mediawiki/2018/e/ed/T--Tongji_China--picture-design-4.png"  width="5%" height="5%" />&emsp;<a href="#phase3" class="test_a"><img src="https://static.igem.org/mediawiki/2018/3/3f/T--Tongji_China--picture-design-6.png"  width="20%" height="10%" style="margin-top:2.1em" /></a>&emsp;<img src="https://static.igem.org/mediawiki/2018/e/ed/T--Tongji_China--picture-design-4.png"  width="5%" height="5%" />&emsp;<a href="#phase4" class="test_a"><img src="https://static.igem.org/mediawiki/2018/d/de/T--Tongji_China--picture-design-7.png"  width="15%" height="10%" style="margin-top:1.9em" /></a></p></div><br><br>
                        <p style="text-align:center"><a href="#PHASE1" class="test_a"><img src="https://static.igem.org/mediawiki/2018/e/e8/T--Tongji_China--picture-design-3.png"  width="12%" height="10%" ></a>&emsp;<img src="https://static.igem.org/mediawiki/2018/e/ed/T--Tongji_China--picture-design-4.png"  width="5%" height="5%">&emsp;<a href="#phase2" class="test_a"><img src="https://static.igem.org/mediawiki/2018/e/e3/T--Tongji_China--picture-design-5.png"  width="17%" height="10%"></a>&emsp;<img src="https://static.igem.org/mediawiki/2018/e/ed/T--Tongji_China--picture-design-4.png"  width="5%" height="5%">&emsp;<a href="#phase3" class="test_a"><img src="https://static.igem.org/mediawiki/2018/3/3f/T--Tongji_China--picture-design-6.png"  width="20%" height="10%"></a>&emsp;<img src="https://static.igem.org/mediawiki/2018/e/ed/T--Tongji_China--picture-design-4.png"  width="5%" height="5%">&emsp;<a href="#phase4" class="test_a"><img src="https://static.igem.org/mediawiki/2018/d/de/T--Tongji_China--picture-design-7.png"  width="15%" height="10%"></a></p><br><br>
+
        <a name="PHASE1" style="color:black; text-decoration:none;">Here you can read how we establish, organize and execute our project of OCANDY:</a> <br><br><br><br>
+
<div class="littletitle">PHASE 1. Dry lab filter</div><br>
                        <a name="PHASE1">Here you can read how we establish, organize and execute our project of OCANDY.</a> <br><br>
+
We use bioinformatic methods to filter our item antigens from SNVs (single nucleotide variations) which occur duing the development of cancer cells.
<font color="#BC818D" face="courier new" size="5"><b>PHASE 1. Dry lab filter<br></b></font>
+
<br><br>For some SNVs will produce proteins that are not found in normal tissues and normal cells. These proteins are likely to activate and attract immune system to attack the tumor cells.
We use bioinformatic methods to filter our item antigens from SNVs (single nucleotide variations) which occur duing the development of cancer cell.
+
<br><br>According to making peptide windows and testing the MHC-I affinity, we can analyse the immunogenicity of our item antigens which are related to colon cancer, then we remould the plasmid of Pseudomonas aeruginosa, adding the gene of interest--antigen gene behind the signing peptide gene.
<br>For some SNVs will produce proteins that are not found in normal tissues and normal cells. These proteins are likely to activate the immune system and attract immune system to attack the tumor cell.
+
                        <br><br>If you want to know more information about dry lab filter, please go to our <a
<br>After analysing the immunogenicity of our item antigens which are related with colon cancer, we remould the plasmid of Pseudomonas aeruginosa, adding the gene of interest--antigen gene behind the signing peptide gene.
+
href="https://2018.igem.org/Team:Tongji_China/Programme">dry lab_programme</a>.<br><br>
<br><br>
+
                        <p style="text-align:center"><img src="https://static.igem.org/mediawiki/2018/a/a1/T--Tongji_China--design_drylab_filter--.png" width="80%"></p>
<a name="phase2"><font color="#BC818D" face="courier new" size="5"><b>PHASE 2. Plasmid remoulding<br></b></font></a>
+
<a name="phase2" style="text-decoration:none;">&emsp;</a><br><br><br><br>
We want to have a new try to make protein delivery effectively into mammalian cell. We chose T3SS as a tool to deliver. Now we need to assemble T3SS and the antigens of our interest together.
+
<div class="littletitle">PHASE 2. Plasmid construction</div><br>
 +
We want to create a new method to deliver the neoantigens into mammalian immune cells. After research, we choose Type III secretion system (T3SS), which is an amazing protein delivery tool. To make use of T3SS, we need to insert our antigen sequences into T3SS plasmid first.  
 
<br><br>
 
<br><br>
<font color="#EEC778" face=charcoal size="4"><I><b># de novo neo-antigen gene synthesis</b></I></font><br>
+
<font color="#EEC778" face=charcoal size="4"><I><b># de novo neoantigen gene synthesis</b></I></font><br>
Because our antigens are very short, we attach P1 as the forward primer and use the antigen sequence as the reverse primer to synthesize so that they can be part of the plasmid of T3SS.
+
Because the antigen sequence is quite short, we cannot choose the common way of synthesizing double strand. So we synthesized the 5’-3’single strand and the 3’-5’ single strand with restriction site on both side, then take the method of annealing to pair two single strands into a double strand.<br><br>
<table border="1" cellpadding="10" width="98%">
+
<div style="text-align:center"><table>
 
<tr>
 
<tr>
 
                                         <td align="center">
 
                                         <td align="center">
<font color="#AEAAAA">Part name</font>
+
Part name
 
</td>
 
</td>
 
                                         <td align="center">
 
                                         <td align="center">
<font color="#AEAAAA">Antigen</font>
+
Antigen
 
</td>
 
</td>
 
<td align="center">
 
<td align="center">
<font color="#AEAAAA">Sequence</font>
+
Sequence
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td align="center">
 
<td align="center">
<font color="#AEAAAA">BBa_K2730001</font>
+
BBa_K2730001
 
</td>
 
</td>
 
                                         <td align="center">
 
                                         <td align="center">
<font color="#AEAAAA">NY-ESO-A</font>
+
NY-ESO-A
 
</td>
 
</td>
 
<td align="center">
 
<td align="center">
                                         <font color="#AEAAAA">atgtcgttgttgatgctgatcacccagtgcccgttgtga</font>
+
                                         atgtcgttgttgatgctgatcacccagtgcccgttgtga
 
                                         </td>
 
                                         </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td align="center">
 
<td align="center">
<font color="#AEAAAA">BBa_K2730002</font>
+
BBa_K2730002
 
</td>
 
</td>
 
                                         <td align="center">
 
                                         <td align="center">
<font color="#AEAAAA">NY-ESO-B</font>
+
NY-ESO-B
 
</td>
 
</td>
 
<td align="center">
 
<td align="center">
                                         <font color="#AEAAAA">atgcagttgtcgttgttgatgctgatcacctga</font>
+
                                         atgcagttgtcgttgttgatgctgatcacctga
 
                                         </td>
 
                                         </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td align="center">
 
<td align="center">
<font color="#AEAAAA">BBa_K2730003</font>
+
BBa_K2730003
 
</td>
 
</td>
 
                                         <td align="center">
 
                                         <td align="center">
<font color="#AEAAAA">EX0201</font>
+
0201
 
</td>
 
</td>
 
<td align="center">
 
<td align="center">
                                         <font color="#AEAAAA">atgttgcacttgtagggctcgtagccgccggcgtga</font>
+
                                         atgttgcacttgtagggctcgtagccgccggcgtga
 
                                         </td>
 
                                         </td>
 
</tr>
 
</tr>
 
                                 <tr>
 
                                 <tr>
 
<td align="center">
 
<td align="center">
<font color="#AEAAAA">BBa_K2730004</font>
+
BBa_K2730004
 
</td>
 
</td>
 
                                         <td align="center">
 
                                         <td align="center">
<font color="#AEAAAA">EX0301A</font>
+
0301A
 
</td>
 
</td>
 
<td align="center">
 
<td align="center">
                                         <font color="#AEAAAA">atgcacttgtagggctcgtagccgccggcgcggtga</font>
+
                                         atgcacttgtagggctcgtagccgccggcgcggtga
 
                                         </td>
 
                                         </td>
 
</tr>
 
</tr>
 
                                 <tr>
 
                                 <tr>
 
<td align="center">
 
<td align="center">
<font color="#AEAAAA">BBa_K2730005</font>
+
BBa_K2730005
 
</td>
 
</td>
 
                                         <td align="center">
 
                                         <td align="center">
<font color="#AEAAAA">EX0301B</font>
+
0301B
 
</td>
 
</td>
 
<td align="center">
 
<td align="center">
                                         <font color="#AEAAAA">atggcgatctcgacccgggacccgttgtcgaagtga</font>
+
                                         atggcgatctcgacccgggacccgttgtcgaagtga
 
                                         </td>
 
                                         </td>
 
</tr>
 
</tr>
 
                                 <tr>
 
                                 <tr>
 
<td align="center">
 
<td align="center">
<font color="#AEAAAA">BBa_K2730006</font>
+
BBa_K2730006
 
</td>
 
</td>
 
                                         <td align="center">
 
                                         <td align="center">
<font color="#AEAAAA">EX0301C</font>
+
0301C
 
</td>
 
</td>
 
<td align="center">
 
<td align="center">
                                         <font color="#AEAAAA">atgaagttgttgaagcggcaggcggaaggcaagtga</font>
+
                                         atgaagttgttgaagcggcaggcggaaggcaagtga
 
                                         </td>
 
                                         </td>
 
</tr>
 
</tr>
</table>
+
</table></div>
 
<div class="instructionOfPicture">
 
<div class="instructionOfPicture">
 
Table1.our antigen sequences
 
Table1.our antigen sequences
Line 121: Line 121:
  
 
<br><br>
 
<br><br>
<font color="#EEC778" face=charcoal size="4"><b><I># T3SS & neo-antigen plasmid creation<br></I></b></font>
+
<font color="#EEC778" face=charcoal size="4"><b><I># T3SS & neo-antigen plasmid construction<br></I></b></font>
We use the attenuated P. aeruginosa strain delta 8, deleted of 7 virulence-related genes (exoS/T/Y, ndk, xcpQ, lasI, rhlI) and one T3S suppressor gene (popN), and delta 9, adding the function of nutritional deficiencies.
+
We use the attenuated P. aeruginosa strain PAK-J△9, in which 7 virulence-related genes (exoS/T/Y, ndk, xcpQ, lasI, rhlI) and one T3S suppressor gene (popN) are knocked out. The μA gene is mutated and it makes this strain a auxotrophic strain that cannot live without D-Glutamate.
<br>Because of forming T3SS, they are employed as the protein delivery vectors.
+
<br><br>Antigens of interest are cloned and expressed on an Escherichia-Pseudomonas shuttle expression plasmid, which encodes T3S effector ExoS promoter with N-terminal ExoS1–54 signal sequence, followed by a FLAG tag and multiple cloning site (MCS). Also on the vector, there is an intact spcS gene encoding the chaperone for the protein delivery.
<br>Antigens of interest were cloned and expressed on an Escherichia-Pseudomonas shuttle expression plasmid, which encodes the T3S effector ExoS promoter with N-terminal ExoS1–54 signal sequence, followed by a FLAG tag and a multiple cloning site (MCS). Also on the vector, an intact spcS gene encoding the chaperone for the ExoS.
+
<br><br>Antigens of interest can be fused in-frame utilizing the MCS and the fusion proteins can be detected by the FLAG tag. Under the guidance of ExoS1–54 secretion signal and the assistance of SpcS chaperone, the item antigens can be efficiently injected into host cells via the T3SS.
<br>Antigens of interest can be fused in-frame utilizing the MCS and the fusion proteins can be detected by following the FLAG tag. Under the guidance of ExoS1–54 secretion signal and the assistance of ExoS chaperone (SpcS), the target peptides can be efficiently injected into mammalian cells via the T3SS.
+
 
<br><br>
 
<br><br>
 
<div class="instructionOfPicture">
 
<div class="instructionOfPicture">
<p style="text-align:center"><img src="https://static.igem.org/mediawiki/2018/4/4c/T--Tongji_China--picture-Design-2.png"  width="90%" height="90%"></p>
+
<p style="text-align:center"><img src="https://static.igem.org/mediawiki/2018/archive/4/4c/20181014044931%21T--Tongji_China--picture-Design-2.png"  width="90%" height="90%"></p>
Figure3. T3SS-based protein delivery tool box
+
Figure3<a name="phase3">&emsp;</a> T3SS-based protein delivery tool box
 
</div>
 
</div>
  
 
<br><br><br>
 
<br><br><br>
<a name="phase3"><font color="#BC818D" face="courier new" size="5"><b>PHASE 3. Testing in vitro and in vivo<br></b></font></a>
+
<div class="littletitle">PHASE 3. Testing in vitro and in vivo</div>
<br>To find our filtered neo-antigens whether are expressed and have strong immunogenicity, we have a series of experiments and build some modeling, you can see them in <a href="https://2018.igem.org/Team:Tongji_China/WetLab">Lab</a>.<br>We do western blot to confirm our antigens that can be secreted after inducing by the low Ca2+ environment or the host cells' attachment.<br>
+
<br>To figure out whether our filtered antigens are expressed and have strong immunogenicity, we conduct a series of experiments and use the Bayesian statistics to build the model, you can see them in <a href="https://2018.igem.org/Team:Tongji_China/WetLab">Wet Lab</a>.<br>We use western blot to analyze whether our antigens can be successfully translated and secreted after inducing by the low Ca2+ environment or the host cell attachment.
We use immunofluorescence to see the antigens are delivered into the host cells successfully.<br>
+
<br><br>We use immunocytochemistry method to figure out whether the antigens can be delivered into HELA cells in vitro.<a name="phase4">&emsp;</a><br><br>
We do ELISA with the help of mice to detect the immune reaction so that our project design can be run to the cancer therapy on the aspect of immunotherapy.
+
We use immunohistochemistry method which is conducted on wild type mouse to detect whether the antigens can be delivered into host cells in intestine in vivo.
 
<br>
 
<br>
 
<div class="instructionOfPicture">
 
<div class="instructionOfPicture">
Line 142: Line 141:
 
<br><br>
 
<br><br>
  
<a name="phase4"><font color="#BC818D" face="courier new" size="5"><b>PHASE 4. Improvement<br></b></font></a>
+
<div class="littletitle">PHASE 4. Improvement</div><br>
<br>
+
  
<font color="#EEC778" face=charcoal size="4"><I><b># Mouse model<br></b></I></font>
+
<font color="#EEC778" face=charcoal size="4"><I><b># Further experiment proof<br></b></I></font>
Our wet lab experiment is not completed, we just do the earlier stage work to show our method take effect, but we also need to verify whether it’s better by oral intake.
+
However, our wet lab experiment is not completed, we just did the earlier stage work to prove that our system can work efficiently. There are many things we can do to further prove the feasibility of our system. We plan to conduct ELISA and ELISPOLT using wild type mice to analyze whether our system can cause immune system response after at least one month engineered P. aeruginosa immunizing. If some positive signals can be detected, we will then do the tumor cell challenge experiment to test whether the activated immune system can kill the tumor cells.
 
<br><br>
 
<br><br>
 
<font color="#EEC778" face=charcoal size="4"><b><I># Individual therapy<br></I></b></font>
 
<font color="#EEC778" face=charcoal size="4"><b><I># Individual therapy<br></I></b></font>
Now our dry lab in project is just catching many cancer people’s samples to find some common antigens as neo-antigen. This method will have some effects but as we all know, different person’s cancer cells have various mutants, if we want to take them as neo-antigens to therapy, we need to proceed from the individual.
+
Now the method we use to filter item antigens in our project is catching many samples from patients with cancer to find some common SNVs and then get the antigen sequences. This method will have some effects but, as we all know, cancer cells' mutations vary among people. If we want to let a specific person's immune system to target to his tumor cells, the best way which was described in the concept "neoantigen" is to using the antigens that are filtered from this person's tumor cells' SNVs. But due to the limitation of the data resources, we cannot get individual SNVs data. So we need to get information from TCGA database. However, the programs we have constructed are also suitable for the individual SNVs data. We are looking forward to expanding our current results into individual therapy area.
<br>Maybe we can expand and enrich our data from cancer people and optimize our algorithm to find more effective neo-antigens.
+
<br><br>Also, maybe we can expand and enrich our data from people with cancer and optimize our algorithm to find more effective neo-antigens.
 +
                        <br><br>Before we get more patients' data, we build a <a
 +
href="https://2018.igem.org/Team:Tongji_China/Modeling">modeling</a> to help predict which mutantional site can be the best one for peptide making as a high immunogenic neoantigen for the certain patient. We think our method will contribute to the individual therapy.  
 
<br><br>
 
<br><br>
 
<font color="#EEC778" face=charcoal size="4"><I><b># Combination therapy<br></b></I></font>
 
<font color="#EEC778" face=charcoal size="4"><I><b># Combination therapy<br></b></I></font>
Neoantigen as an immunotherapy can also take some side effects, if the immunogenicity is very strong, and the targeting of cancer is not very powerful, maybe it will hurt normal tissue. So we can match our method with other medicine of cancer therapy, on the one hand, it can reduce the new mutants to emerge, on the other hand it will help us to alleviate the bad influence of our method.
+
Neoantigen as an immunotherapy can also have some side effects, if the immunogenicity is very strong, and the targeting of cancer is not very powerful, maybe it will hurt normal tissue. So we need to match our method with other medicine of cancer therapy. On the one hand, it can reduce the new mutants to emerge, on the other hand, it will help us to alleviate the bad influence of our method.
<br>We need to test which medicine can be a good partner.<br><br><br>
+
<br><br>We need to test which medicine can be a good partner.<br><br><br>
<a href="https://2018.igem.org/Team:Tongji_China/Project">Return to the Project Overview</a>
+
<a href="https://2018.igem.org/Team:Tongji_China/Project"><font size=2>Return to the Project Overview</font></a>
  
 
</div>
 
</div>

Latest revision as of 23:42, 17 October 2018

Design
Project
Design



Here you can read how we establish, organize and execute our project of OCANDY:



PHASE 1. Dry lab filter

We use bioinformatic methods to filter our item antigens from SNVs (single nucleotide variations) which occur duing the development of cancer cells.

For some SNVs will produce proteins that are not found in normal tissues and normal cells. These proteins are likely to activate and attract immune system to attack the tumor cells.

According to making peptide windows and testing the MHC-I affinity, we can analyse the immunogenicity of our item antigens which are related to colon cancer, then we remould the plasmid of Pseudomonas aeruginosa, adding the gene of interest--antigen gene behind the signing peptide gene.

If you want to know more information about dry lab filter, please go to our dry lab_programme.





PHASE 2. Plasmid construction

We want to create a new method to deliver the neoantigens into mammalian immune cells. After research, we choose Type III secretion system (T3SS), which is an amazing protein delivery tool. To make use of T3SS, we need to insert our antigen sequences into T3SS plasmid first.

# de novo neoantigen gene synthesis
Because the antigen sequence is quite short, we cannot choose the common way of synthesizing double strand. So we synthesized the 5’-3’single strand and the 3’-5’ single strand with restriction site on both side, then take the method of annealing to pair two single strands into a double strand.

Part name Antigen Sequence
BBa_K2730001 NY-ESO-A atgtcgttgttgatgctgatcacccagtgcccgttgtga
BBa_K2730002 NY-ESO-B atgcagttgtcgttgttgatgctgatcacctga
BBa_K2730003 0201 atgttgcacttgtagggctcgtagccgccggcgtga
BBa_K2730004 0301A atgcacttgtagggctcgtagccgccggcgcggtga
BBa_K2730005 0301B atggcgatctcgacccgggacccgttgtcgaagtga
BBa_K2730006 0301C atgaagttgttgaagcggcaggcggaaggcaagtga
Table1.our antigen sequences


# T3SS & neo-antigen plasmid construction
We use the attenuated P. aeruginosa strain PAK-J△9, in which 7 virulence-related genes (exoS/T/Y, ndk, xcpQ, lasI, rhlI) and one T3S suppressor gene (popN) are knocked out. The μA gene is mutated and it makes this strain a auxotrophic strain that cannot live without D-Glutamate.

Antigens of interest are cloned and expressed on an Escherichia-Pseudomonas shuttle expression plasmid, which encodes T3S effector ExoS promoter with N-terminal ExoS1–54 signal sequence, followed by a FLAG tag and multiple cloning site (MCS). Also on the vector, there is an intact spcS gene encoding the chaperone for the protein delivery.

Antigens of interest can be fused in-frame utilizing the MCS and the fusion proteins can be detected by the FLAG tag. Under the guidance of ExoS1–54 secretion signal and the assistance of SpcS chaperone, the item antigens can be efficiently injected into host cells via the T3SS.

Figure3 T3SS-based protein delivery tool box



PHASE 3. Testing in vitro and in vivo

To figure out whether our filtered antigens are expressed and have strong immunogenicity, we conduct a series of experiments and use the Bayesian statistics to build the model, you can see them in Wet Lab.
We use western blot to analyze whether our antigens can be successfully translated and secreted after inducing by the low Ca2+ environment or the host cell attachment.

We use immunocytochemistry method to figure out whether the antigens can be delivered into HELA cells in vitro.

We use immunohistochemistry method which is conducted on wild type mouse to detect whether the antigens can be delivered into host cells in intestine in vivo.


PHASE 4. Improvement

# Further experiment proof
However, our wet lab experiment is not completed, we just did the earlier stage work to prove that our system can work efficiently. There are many things we can do to further prove the feasibility of our system. We plan to conduct ELISA and ELISPOLT using wild type mice to analyze whether our system can cause immune system response after at least one month engineered P. aeruginosa immunizing. If some positive signals can be detected, we will then do the tumor cell challenge experiment to test whether the activated immune system can kill the tumor cells.

# Individual therapy
Now the method we use to filter item antigens in our project is catching many samples from patients with cancer to find some common SNVs and then get the antigen sequences. This method will have some effects but, as we all know, cancer cells' mutations vary among people. If we want to let a specific person's immune system to target to his tumor cells, the best way which was described in the concept "neoantigen" is to using the antigens that are filtered from this person's tumor cells' SNVs. But due to the limitation of the data resources, we cannot get individual SNVs data. So we need to get information from TCGA database. However, the programs we have constructed are also suitable for the individual SNVs data. We are looking forward to expanding our current results into individual therapy area.

Also, maybe we can expand and enrich our data from people with cancer and optimize our algorithm to find more effective neo-antigens.

Before we get more patients' data, we build a modeling to help predict which mutantional site can be the best one for peptide making as a high immunogenic neoantigen for the certain patient. We think our method will contribute to the individual therapy.

# Combination therapy
Neoantigen as an immunotherapy can also have some side effects, if the immunogenicity is very strong, and the targeting of cancer is not very powerful, maybe it will hurt normal tissue. So we need to match our method with other medicine of cancer therapy. On the one hand, it can reduce the new mutants to emerge, on the other hand, it will help us to alleviate the bad influence of our method.

We need to test which medicine can be a good partner.


Return to the Project Overview