Line 32: | Line 32: | ||
} | } | ||
− | + | .table-head { | |
+ | background-color: #BFBFBF; | ||
color: #131313; | color: #131313; | ||
+ | } | ||
+ | |||
+ | .table-body { | ||
+ | width: 100%; | ||
+ | } | ||
+ | |||
+ | .table-head table, | ||
+ | .table-body table { | ||
+ | width: 100%; | ||
+ | text-align: center; | ||
+ | } | ||
+ | |||
+ | .table-body table tr:nth-child(2n+1) { | ||
+ | background-color: #f2f2f2; | ||
+ | } | ||
+ | |||
+ | .table-body table tr:nth-child(2n) { | ||
+ | background-color: rgb(223, 223, 223); | ||
+ | } | ||
+ | |||
+ | .table-head td, | ||
+ | .table-body td { | ||
+ | height: 42px; | ||
+ | } | ||
+ | |||
+ | #HQ_page table { | ||
+ | margin: 0 !important; | ||
+ | } | ||
+ | |||
+ | #HQ_page th { | ||
+ | background-color: #BFBFBF !important; | ||
} | } | ||
</style> | </style> | ||
<link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&ctype=text/css"> | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/common-style?action=raw&ctype=text/css"> | ||
− | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/experiment-common-style?action=raw&ctype=text/css"> | + | <link rel="stylesheet" href="https://2018.igem.org/Template:BIT-China/css/experiment-common-style?action=raw&ctype=text/css" /> |
<style> | <style> | ||
body { | body { | ||
− | height: | + | height: 900vh; |
} | } | ||
Line 47: | Line 79: | ||
width: 200px; | width: 200px; | ||
margin-left: 50vw; | margin-left: 50vw; | ||
− | top: | + | top: 400px; |
opacity: 1; | opacity: 1; | ||
− | |||
} | } | ||
Line 58: | Line 89: | ||
top: 450px; | top: 450px; | ||
opacity: 1; | opacity: 1; | ||
− | + | } | |
+ | |||
+ | figcaption { | ||
+ | color: #131313; | ||
} | } | ||
</style> | </style> | ||
Line 140: | Line 174: | ||
</li> | </li> | ||
</ul> | </ul> | ||
− | |||
<a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a> | <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a> | ||
<!-- end --> | <!-- end --> | ||
<div class="EXP-white-head"></div> | <div class="EXP-white-head"></div> | ||
− | |||
<div class="EXP-title"> | <div class="EXP-title"> | ||
− | <a class="EXP-title-1" style="z-index:4;border-bottom-style: solid;text-decoration: none;color: #131313;"> | + | <a class="EXP-title-1" style="z-index:4;border-bottom-style: solid;text-decoration: none;color: #131313;">OUTPUT</a> |
</div> | </div> | ||
− | <div id=" | + | <div id="EXP" class="EXP-content-container" style="z-index: 1;margin-top:calc(25vh - 30px);"> |
− | <div id=" | + | <div id="EXP0" class="cd-section"> |
+ | </div> | ||
− | + | <div id="EXP1" class="cd-section EXP-margin-toTitle"> | |
− | + | ||
− | + | ||
− | + | ||
− | + | <div class="EXP-margin-toTitle"> | |
− | + | <p class="EXP-content-p">To sense intracellular ROS content and express its changes quickly and | |
− | + | intuitively, we constructed roGFP2-orp1 fusion protein and optimized it. | |
− | + | </p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
− | + | <div class="EXP-title-2"> | |
− | + | <a style="text-decoration: none;color: #131313;">Increase the sensitivity of roGFP2 to hydrogen | |
− | + | peroxide</a> | |
− | + | </div> | |
− | + | <div class="EXP-content-all"> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | <div class="EXP-title-3 EXP-margin-Title3Up"> | ||
+ | <a style="text-decoration: none;color: #131313;">Overview</a> | ||
+ | </div> | ||
+ | <div class="EXP-content"> | ||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | We made codon optimization of roGFP2 gene sequences and constructed RoGFP2-Orp1 fusion protein | |
− | + | to make roGFP2 more sensitive to the REDOX state of cells. | |
− | + | ||
</p> | </p> | ||
− | + | </div> | |
− | + | ||
− | + | ||
+ | <div class="EXP-title-3 EXP-margin-Title3Up"> | ||
+ | <a style="text-decoration: none;color: #131313;">Specific methods:</a> | ||
+ | </div> | ||
+ | <div class="EXP-content"> | ||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | <b>First</b>, we obtained the gene sequence of roGFP2 from the part:BBa_K2296006: Constitutive | |
− | + | Promoter-RBS-roGFP2-Orp1 C82S and codon optimized it for our chassis organisms---yeast, in | |
− | + | anticipation of better expression in yeast. | |
− | + | ||
</p> | </p> | ||
− | |||
<figure class="EXP-Fig EXP-margin-toContentP"> | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/3/3a/T--BIT-China--ExperimentOutputFig1.png"> |
− | <figcaption></figcaption> | + | <figcaption><br></figcaption> |
</figure> | </figure> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | <b>Second</b>, we synthesized the codon-optimized roGFP2+linker sequence, obtained the sequence | |
− | + | of Orp1 from the yeast genome and ligated them by OE-PCR. This enhances the specificity of | |
− | + | roGFP2 for recognizing hydrogen peroxide and increases its sensitivity to H<sub>2</sub>O<sub>2</sub>. | |
− | + | After that, we completed the 82nd cysteine point mutation (C82S), which made our signal output | |
− | + | more responsive. | |
</p> | </p> | ||
− | |||
<figure class="EXP-Fig EXP-margin-toContentP"> | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src=" https://static.igem.org/mediawiki/2018/2/20/T--BIT-China--ExperimentOutputFig2.png"> |
− | <figcaption> | + | <figcaption>Fig.2 Orp1 protein,roGFP+Linker and fusion protein roGFP-Orp1 obtained by PCR. |
− | + | 1.size of Orp1 (492bp) 2. size of roGFP+Linker (825bp) 3. size of roGFP2-Orp1 (1317bp) | |
− | + | </figcaption> | |
− | + | ||
− | + | ||
</figure> | </figure> | ||
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | <div class="EXP-title-2"> | ||
+ | <a style="text-decoration: none;color: #131313;">Select the suitable promoter and verify the function | ||
+ | of the gene</a> | ||
+ | </div> | ||
+ | |||
+ | <div class="EXP-content-all"> | ||
+ | |||
+ | <div class="EXP-title-3 EXP-margin-Title3Up"> | ||
+ | <a style="text-decoration: none;color: #131313;">Overview:</a> | ||
+ | </div> | ||
+ | <div class="EXP-content"> | ||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | After optimizing the most important detector component roGFP2-orp1, we need to construct it | |
− | in | + | into yeasts modified in regulator and feedback part. In order to make roGFP2-orp1 in a suitable |
− | + | redox state, we chose several promoters of different intensity and ligated them to roGFP2-orp1 | |
− | + | through OE-PCR, then adding hydrogen peroxide to verify its function. | |
</p> | </p> | ||
− | |||
− | |||
− | |||
− | |||
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
+ | <div class="EXP-title-3 EXP-margin-Title3Up"> | ||
+ | <a style="text-decoration: none;color: #131313;">Specific method:</a> | ||
+ | </div> | ||
+ | <div class="EXP-content"> | ||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | First, we obtain seven promoters of different intensity from Saccharomyces yeast genome through | |
− | + | enzyme digestion method. They are: FBA1,TEF1,TEF2,ENO2,PCK1,PDC1 and PGI1. <sup>[1]</sup> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</p> | </p> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | Second, we linked the promoter fragment to the previously constructed fragment roGFP2-orp1by | |
− | + | OE-PCR and constructed it on the pESC-Trp plasmid. We screened positive results in the | |
+ | following of digestion,ligation and transformation of the large intestine. Finally, we | ||
+ | constructed the fragments into our chassis organisms through yeast transformation. | ||
</p> | </p> | ||
− | |||
<figure class="EXP-Fig EXP-margin-toContentP"> | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/7/75/T--BIT-China--ExperimentOutputFig3.png"> |
− | <figcaption> | + | <figcaption></figcaption> |
− | + | ||
</figure> | </figure> | ||
− | |||
<figure class="EXP-Fig EXP-margin-toContentP"> | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/8/89/T--BIT-China--ExperimentOutputFig4.png"> |
− | <figcaption>Fig. | + | <figcaption></figcaption> |
− | + | </figure> | |
+ | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/0/0c/T--BIT-China--ExperimentOutputFig5.png"> | ||
+ | <figcaption></figcaption> | ||
+ | </figure> | ||
+ | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/e/ef/T--BIT-China--ExperimentOutputFig6.png"> | ||
+ | <figcaption>Fig.3-6 Four promoters obtained by PCR</figcaption> | ||
</figure> | </figure> | ||
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | + | </div> | |
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <div class="EXP-title-2"> | ||
+ | <a style="text-decoration: none;color: #131313;">Result & discussion</a> | ||
+ | </div> | ||
+ | <div class="EXP-content-all"> | ||
+ | |||
+ | <div class="EXP-title-3 EXP-margin-Title3Up"> | ||
+ | <a style="text-decoration: none;color: #131313;">The response of roGFP2-Orp1 to H<sub>2</sub>O<sub>2</sub></a> | ||
+ | </div> | ||
+ | <div class="EXP-content"> | ||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | According to literature<sup>[2]</sup>, roGFP2-Orp1 green fluorescent protein shows peak value | |
− | + | at 405nm (oxidation peak) and 488nm (reduction peak). Fluorescence ratio R (R=I408 / I488) is | |
− | + | uesed to the redox degree of roGFP2-Orp1. Therefore, we used different H<sub>2</sub>O<sub>2</sub> | |
− | + | concentrations (independent variable) to simulate the accumulation of ROS in cells and the | |
− | + | fluorescence ratio (dependent variable) to characterize the redox degree of roGFP2-Orp1, which | |
− | in the | + | means that the increase of fluorescence ratio R shows roGFP2-Orp1 is oxidized and the decrease |
− | + | shows reduction. | |
− | + | ||
− | + | ||
− | + | ||
</p> | </p> | ||
− | |||
<figure class="EXP-Fig EXP-margin-toContentP"> | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/4/4b/T--BIT-China--ExperimentOutputFig7.png"> |
− | <figcaption>Fig. | + | <figcaption>Fig.7 Experimental Group</figcaption> |
</figure> | </figure> | ||
+ | <p class="EXP-content-p"> | ||
+ | As Figure.7 shown, the fluorescence ratio R of roGFP2-Orp1 increases with the increase of H<sub>2</sub>O<sub>2</sub> | ||
+ | concentration. And the fluorescence ratio is basically unchanged when the concentration of H<sub>2</sub>O<sub>2</sub> | ||
+ | exceeds 0.8 mM. | ||
+ | </p> | ||
<figure class="EXP-Fig EXP-margin-toContentP"> | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
− | <img src="https://static.igem.org/mediawiki/2018/1/ | + | <img src="https://static.igem.org/mediawiki/2018/1/11/T--BIT-China--ExperimentOutputFig8.png"> |
− | <figcaption>Fig. | + | <figcaption>Fig.8 Control Group</figcaption> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</figure> | </figure> | ||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | As Figure. | + | As Figure.8 shown, the fluorescence ratio of wide-type was not affected by the change of H<sub>2</sub>O<sub>2</sub> |
− | + | concentration and remained unchanged. | |
− | + | ||
</p> | </p> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | </div> | ||
+ | |||
+ | <div class="EXP-title-3 EXP-margin-Title3Up"> | ||
+ | <a style="text-decoration: none;color: #131313;">Redox reversibility of roGFP2-Orp1</a> | ||
+ | </div> | ||
+ | <div class="EXP-content"> | ||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | Firstly, we made the cells almost be oxidation state by adding 1 mM H<sub>2</sub>O<sub>2</sub> | |
− | + | and observed the change of fluorescence ratio R (dependent variable) with time (independent | |
+ | variable). | ||
</p> | </p> | ||
+ | <figure class="EXP-Fig EXP-margin-toContentP"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/0/05/T--BIT-China--ExperimentOutputFig9.png"> | ||
+ | <figcaption>Fig.9 Verify Redox Reversibility of roGFP2-Orp1</figcaption> | ||
+ | </figure> | ||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | As Figure.9 shown, the fluorescence ratio R decreased slightly in the range of 0 to 20 mins, | |
− | + | because cell itself has the mechanism of scavenging ROS and H<sub>2</sub>O<sub>2</sub> will | |
+ | decompose spontaneously. At the 23 mins, we added DTT (strong reducing agent) with the final | ||
+ | concentration of 5 mM. As a result, the fluorescence ratio R decreased significantly. | ||
</p> | </p> | ||
− | |||
− | |||
− | |||
− | |||
<p class="EXP-content-p"> | <p class="EXP-content-p"> | ||
− | + | Therefore, the redox of our roGFP2-Orp1 is reversible. | |
− | + | ||
</p> | </p> | ||
+ | |||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <div class="EXP-title-2"> | ||
+ | <a style="text-decoration: none;color: #131313;">Codon optimization of roGFP2-Orp1</a> | ||
+ | </div> | ||
+ | <div class="EXP-content-all"> | ||
− | + | <div class="EXP-title-3 EXP-margin-Title3Up"> | |
− | + | <a style="text-decoration: none;color: #131313;">Determinate the DTT concentration making | |
− | + | roGFP2-Orp1 completely reduced.</a> | |
− | + | </div> | |
− | + | <div class="EXP-content"> | |
− | + | <p class="EXP-content-p"> | |
− | + | We added three different concentrations of DTT, 0.5 mM, 3 mM and 5 mM. When DTT was added, the | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Revision as of 23:55, 17 October 2018
To sense intracellular ROS content and express its changes quickly and intuitively, we constructed roGFP2-orp1 fusion protein and optimized it.
We made codon optimization of roGFP2 gene sequences and constructed RoGFP2-Orp1 fusion protein to make roGFP2 more sensitive to the REDOX state of cells.
First, we obtained the gene sequence of roGFP2 from the part:BBa_K2296006: Constitutive Promoter-RBS-roGFP2-Orp1 C82S and codon optimized it for our chassis organisms---yeast, in anticipation of better expression in yeast.
Second, we synthesized the codon-optimized roGFP2+linker sequence, obtained the sequence of Orp1 from the yeast genome and ligated them by OE-PCR. This enhances the specificity of roGFP2 for recognizing hydrogen peroxide and increases its sensitivity to H2O2. After that, we completed the 82nd cysteine point mutation (C82S), which made our signal output more responsive.
After optimizing the most important detector component roGFP2-orp1, we need to construct it into yeasts modified in regulator and feedback part. In order to make roGFP2-orp1 in a suitable redox state, we chose several promoters of different intensity and ligated them to roGFP2-orp1 through OE-PCR, then adding hydrogen peroxide to verify its function.
First, we obtain seven promoters of different intensity from Saccharomyces yeast genome through enzyme digestion method. They are: FBA1,TEF1,TEF2,ENO2,PCK1,PDC1 and PGI1. [1]
Second, we linked the promoter fragment to the previously constructed fragment roGFP2-orp1by OE-PCR and constructed it on the pESC-Trp plasmid. We screened positive results in the following of digestion,ligation and transformation of the large intestine. Finally, we constructed the fragments into our chassis organisms through yeast transformation.
According to literature[2], roGFP2-Orp1 green fluorescent protein shows peak value at 405nm (oxidation peak) and 488nm (reduction peak). Fluorescence ratio R (R=I408 / I488) is uesed to the redox degree of roGFP2-Orp1. Therefore, we used different H2O2 concentrations (independent variable) to simulate the accumulation of ROS in cells and the fluorescence ratio (dependent variable) to characterize the redox degree of roGFP2-Orp1, which means that the increase of fluorescence ratio R shows roGFP2-Orp1 is oxidized and the decrease shows reduction.
As Figure.7 shown, the fluorescence ratio R of roGFP2-Orp1 increases with the increase of H2O2 concentration. And the fluorescence ratio is basically unchanged when the concentration of H2O2 exceeds 0.8 mM.
As Figure.8 shown, the fluorescence ratio of wide-type was not affected by the change of H2O2 concentration and remained unchanged.
Firstly, we made the cells almost be oxidation state by adding 1 mM H2O2 and observed the change of fluorescence ratio R (dependent variable) with time (independent variable).
As Figure.9 shown, the fluorescence ratio R decreased slightly in the range of 0 to 20 mins, because cell itself has the mechanism of scavenging ROS and H2O2 will decompose spontaneously. At the 23 mins, we added DTT (strong reducing agent) with the final concentration of 5 mM. As a result, the fluorescence ratio R decreased significantly.
Therefore, the redox of our roGFP2-Orp1 is reversible.
We added three different concentrations of DTT, 0.5 mM, 3 mM and 5 mM. When DTT was added, the