Difference between revisions of "Team:BIT-China/roGFP2-Orp1MichaelisEquationModel"

 
(10 intermediate revisions by the same user not shown)
Line 111: Line 111:
 
<body>
 
<body>
  
    <ul id="left-nav">
+
            <ul id="left-nav">
 
         <li>
 
         <li>
 
             <a>PROJECT</a>
 
             <a>PROJECT</a>
Line 127: Line 127:
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/ExperimentsFeedback">Feedback</a></li>
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/ExperimentsFeedback">Feedback</a></li>
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/ExperimentsOutput">Output</a></li>
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/ExperimentsOutput">Output</a></li>
                 <li><a href="https://2018.igem.org/Team:BIT-China/ExperimentsInput">Input</a></li>
+
                 <li><a href="https://2018.igem.org/Team:BIT-China/Results">Results</a></li>
 
             </ul>
 
             </ul>
 
         </li>
 
         </li>
Line 135: Line 135:
 
             <ul>
 
             <ul>
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/Model">Overview</a></li>
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/Model">Overview</a></li>
                 <li><a href="https://2018.igem.org/Team:BIT-China/FluorescentProbesModel">Fluorescent Probes Model </a></li>
+
                 <li><a href="https://2018.igem.org/Team:BIT-China/FluorescentProbesModel">Fluorescent Probe Model </a></li>
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/H2O2DecompositionModel">H<sub>2</sub>O<sub>2</sub>
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/H2O2DecompositionModel">H<sub>2</sub>O<sub>2</sub>
 
                         Decomposition Model</a></li>
 
                         Decomposition Model</a></li>
  
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/roGFP2-Orp1MichaelisEquationModel">roGFP2-Orp1
 
                 <li><a href="https://2018.igem.org/Team:BIT-China/roGFP2-Orp1MichaelisEquationModel">roGFP2-Orp1
                         Michaelis equations Model</a></li>
+
                         Michaelis equation Model</a></li>
 
             </ul>
 
             </ul>
 
         </li>
 
         </li>
Line 185: Line 185:
 
         </li>
 
         </li>
 
     </ul>
 
     </ul>
 
 
     <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a>
 
     <a href="https://2018.igem.org/Team:BIT-China"><img id="imgA" class="imgA-new-pos" src="https://static.igem.org/mediawiki/2018/4/46/T--BIT-China--iGEM2018-A_img.png" /></a>
 
     <!-- end -->
 
     <!-- end -->
Line 195: Line 194:
 
     <div id="MD-content-all" class="MD-content-container" style="margin-top:calc(25vh - 30px);">
 
     <div id="MD-content-all" class="MD-content-container" style="margin-top:calc(25vh - 30px);">
 
         <div class="MD-title">
 
         <div class="MD-title">
             <a style="border-bottom-style: solid;text-decoration: none;color: #131313;">Nernst Equilibrium Model</a>
+
             <a style="border-bottom-style: solid;text-decoration: none;color: #131313;">roGFP2-Orp1 MICHAELIS EQUATION MODEL</a>
 
         </div>
 
         </div>
  
Line 225: Line 224:
 
                     the protein with H<sub>2</sub>O<sub>2</sub> can be considered as a classical enzymatic reaction
 
                     the protein with H<sub>2</sub>O<sub>2</sub> can be considered as a classical enzymatic reaction
 
                     meaning that this
 
                     meaning that this
                     reaction is a Michael equation, and the oxidation state of roGFP2 is one of the reaction products.
+
                     reaction is a roGFP2-Orp1 Michaelis equation Model, and the oxidation state of roGFP2 is one of the reaction products.
 
                 </p>
 
                 </p>
  
 
                 <p class="MD-content-p MD-margin-toP">
 
                 <p class="MD-content-p MD-margin-toP">
 
                     2. The total intracellular concentration of roGFP2 is constant. And roGFP2 has two states,
 
                     2. The total intracellular concentration of roGFP2 is constant. And roGFP2 has two states,
                     oxidative state and reductive state. And the intercellular protein concentration is depended on the
+
                     oxidative state and reductive state. And the intracellular protein concentration is depended on the
 
                     transcription rate of promoter.
 
                     transcription rate of promoter.
 
                 </p>
 
                 </p>
Line 249: Line 248:
 
                 <p class="MD-content-p">
 
                 <p class="MD-content-p">
 
                     According to Hypothesis 1, we consider the reaction process of intracellular hydrogen peroxide with
 
                     According to Hypothesis 1, we consider the reaction process of intracellular hydrogen peroxide with
                     roGFP2 as an enzymatic reaction process, which is consistent with the Michael equation.
+
                     roGFP2 as an enzymatic reaction process, which is consistent with the roGFP2-Orp1 Michaelis equation Model.
 
                 </p>
 
                 </p>
  
Line 276: Line 275:
 
                     is the number of oxidized roGFP2 molecules. Based on the assumption that the overall fluorescence
 
                     is the number of oxidized roGFP2 molecules. Based on the assumption that the overall fluorescence
 
                     intensity is equal to the sum of the fluorescence intensities from the individual roGFP2 molecules,
 
                     intensity is equal to the sum of the fluorescence intensities from the individual roGFP2 molecules,
                     the relationships were given in Table 3.
+
                     the relationships were given in Table 1.
 
                 </p>
 
                 </p>
  
 
                 <p class="MD-content-p MD-margin-toP">
 
                 <p class="MD-content-p MD-margin-toP">
                     Table 3. Relationships Between Fluorescence Intensities and Probe Molecules
+
                     Table 1. Relationships Between Fluorescence Intensities and Probe Molecules
 
                 </p>
 
                 </p>
 
                 <div class="table-head">
 
                 <div class="table-head">
Line 394: Line 393:
  
 
                 <p class="MD-content-p MD-margin-toP">
 
                 <p class="MD-content-p MD-margin-toP">
                     In order to obtain the two constants in the Micheal equation, we measured the reaction rate of the
+
                     In order to obtain the two constants in the Michealis equation, we measured the reaction rate of the
 
                     reaction in yeast cells by applying different concentrations of H<sub>2</sub>O<sub>2</sub> and
 
                     reaction in yeast cells by applying different concentrations of H<sub>2</sub>O<sub>2</sub> and
 
                     using the simulation
 
                     using the simulation
Line 404: Line 403:
 
                 <figure class="MD-Fig MD-margin-toContentP">
 
                 <figure class="MD-Fig MD-margin-toContentP">
 
                     <img src="https://static.igem.org/mediawiki/2018/6/6c/T--BIT-China--iGEM2018-Modeling10.PNG">
 
                     <img src="https://static.igem.org/mediawiki/2018/6/6c/T--BIT-China--iGEM2018-Modeling10.PNG">
                     <figcaption>Fig.4 Fluorescence ratio measurement data from wet experiment</figcaption>
+
                     <figcaption>Fig.1 Fluorescence ratio measurement data from wet experiment</figcaption>
 
                 </figure>
 
                 </figure>
  
 
                 <figure class="MD-Fig MD-margin-toContentP">
 
                 <figure class="MD-Fig MD-margin-toContentP">
 
                     <img src="https://static.igem.org/mediawiki/2018/e/e0/T--BIT-China--iGEM2018-Modeling11.PNG">
 
                     <img src="https://static.igem.org/mediawiki/2018/e/e0/T--BIT-China--iGEM2018-Modeling11.PNG">
                     <figcaption>Fig.5 Reaction rate measurement data from wet experiment</figcaption>
+
                     <figcaption>Fig.2 Reaction rate measurement data from wet experiment</figcaption>
 
                 </figure>
 
                 </figure>
  
Line 418: Line 417:
 
                 <figure class="MD-Fig MD-margin-toContentP">
 
                 <figure class="MD-Fig MD-margin-toContentP">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/5c/T--BIT-China--iGEM2018-Modeling12.PNG">
 
                     <img src="https://static.igem.org/mediawiki/2018/5/5c/T--BIT-China--iGEM2018-Modeling12.PNG">
                     <figcaption>Fig.6 v<sub>max⁡</sub> and K<sub>m⁡</sub> calculation using double reciprocal mapping</figcaption>
+
                     <figcaption>Fig.3 v<sub>max⁡</sub> and K<sub>m⁡</sub> calculation using double reciprocal mapping</figcaption>
 
                 </figure>
 
                 </figure>
  
Line 445: Line 444:
 
                 can change
 
                 can change
 
                 the spectral properties of our system's roGFP2, and successfully convert our selected ROS signal
 
                 the spectral properties of our system's roGFP2, and successfully convert our selected ROS signal
                 (Intercellular H<sub>2</sub>O<sub>2</sub> concentration) into a visualized fluorescent signal that
+
                 (Intracellular H<sub>2</sub>O<sub>2</sub> concentration) into a visualized fluorescent signal that
 
                 means we can evaluate the
 
                 means we can evaluate the
                 intercellular H<sub>2</sub>O<sub>2</sub> concentration easily through calculate the OxD value.
+
                 intracellular H<sub>2</sub>O<sub>2</sub> concentration easily through calculate the OxD value.
 
                 However, due to time and experimental limitation, our model is only a preliminary establishment, and
 
                 However, due to time and experimental limitation, our model is only a preliminary establishment, and
 
                 its subsequent calibration work is limited by experiment and time, there is no enough time to continue
 
                 its subsequent calibration work is limited by experiment and time, there is no enough time to continue

Latest revision as of 00:46, 18 October 2018

In the previous model, we successfully obtained the relationship between intracellular H2O2 concentration and extracellular H2O2 concentration. Therefore, we were going to establish the relationship between intracellular H2O2 concentration and roGFP2-Orp1 in order to evaluate the antioxidant function signal output of our entire system.

1. The roGFP2-Orp1 is a fusion protein, and Orp1 is a catalase. Therefore, the reaction process of the protein with H2O2 can be considered as a classical enzymatic reaction meaning that this reaction is a roGFP2-Orp1 Michaelis equation Model, and the oxidation state of roGFP2 is one of the reaction products.

2. The total intracellular concentration of roGFP2 is constant. And roGFP2 has two states, oxidative state and reductive state. And the intracellular protein concentration is depended on the transcription rate of promoter.

3. The two absorption peak values of roGFP2 at 405 nm and 488 nm are linear with the protein concentration in two states.

According to Hypothesis 1, we consider the reaction process of intracellular hydrogen peroxide with roGFP2 as an enzymatic reaction process, which is consistent with the roGFP2-Orp1 Michaelis equation Model.

$$V=\frac{v_{max}[H_{2}O_{2}]}{K_{m}+[H_{2}O_{2}]}$$

Here we define a new parameter OxDroGFP2 to reflect the degree of oxidation of roGFP2. Meanwhile, facilitate subsequent calculations.

$$OxD_{roGFP2}=\frac{[roGFP2_{ox}]}{[roGFP2_{ox}]+[roGFP2_{red}]}$$

According to Hypothesis 3, we can correlate the redox state of roGFP2 with the fluorescence value measured by the macroscopic observables easily. To establish this relationship, several molecular quantities followed need to be defined. i405red, i405ox, i488red, and i488ox are the fluorescence intensities contributed by a single roGFP2 molecule at the indicated wavelength and redox state. Ntotal is the total number of roGFP2 molecules. Nred is the number of reduced roGFP2 molecules. Nox is the number of oxidized roGFP2 molecules. Based on the assumption that the overall fluorescence intensity is equal to the sum of the fluorescence intensities from the individual roGFP2 molecules, the relationships were given in Table 1.

Table 1. Relationships Between Fluorescence Intensities and Probe Molecules

Condition Formula
Limiting condition 1: Ntotal = Nred I405red = Ntotal · i405red
Complete reduction Nox = 0 I488red = Ntotal · i488red
Limiting condition 2: Ntotal = Nox I405ox = Ntotal · i405ox
Complete oxidation Nred = 0 I488ox = Ntotal · i488ox
Actual measurement Ntotal = Nred + Nox I405 = Nox · i405ox + Nred · i405red
I488 = Nox · i488ox + Nred · i488red

By substituting the resulting equations (right column of Table 3) into OxDroGFP2=Nox/Ntotal, the relationship between OxDroGFP2 and the macroscopic observables can be deduced.[1]

$$oxD_{roGFP2}=\frac{I405\cdot I488_{red}-I405_{red}\cdot I488}{I405\cdot I488_{red}-I405\cdot I488_{ox}+I405_{ox}\cdot I488-I405_{red}\cdot I488}$$

After the above relationship is completed, since the absolute protein concentration determination is difficult, we define the relative reaction rate as

$$V^{'}=\frac{V}{[roGFP2_{ox}]+[roGFP2_{red}]}$$

$$OxD_{roGFP2}=\frac{[roGFP2_{ox}]}{[roGFP2_{ox}]+[roGFP2_{red}]}$$

$$V^{'}=\frac{OxD^{'}-OxD}{t^{'}-t}$$

At the same time, according to Hypothesis 2, roGFP2total is constant, but the protein concentration could not be measured by us. So we thought that under the same promoter conditions, the protein concentration was basically the same and according to the data provided in the previous literature, it is known that in yeast cells, the Eno2 protein concentration is around 0.5 mM.[2]

So we could get:

$$[roGFP2_{total}]=0.5\ mM$$

In order to obtain the two constants in the Michealis equation, we measured the reaction rate of the reaction in yeast cells by applying different concentrations of H2O2 and using the simulation results of the H2O2 Decomposition Model in combination with the function of roGFP2. The results were as follows:

Fig.1 Fluorescence ratio measurement data from wet experiment
Fig.2 Reaction rate measurement data from wet experiment

Calculate two constants by double reciprocal mapping.

Fig.3 vmax⁡ and Km⁡ calculation using double reciprocal mapping

$$v_{max}=0.015207$$

$$K_{m}=0.451642$$

The relationship between the change in fluorescence intensity of roGFP2 and the concentration of intracellular H2O2 is set up successfully.

Our model has been successfully implemented. Different concentrations of intracellular H2O2 can change the spectral properties of our system's roGFP2, and successfully convert our selected ROS signal (Intracellular H2O2 concentration) into a visualized fluorescent signal that means we can evaluate the intracellular H2O2 concentration easily through calculate the OxD value. However, due to time and experimental limitation, our model is only a preliminary establishment, and its subsequent calibration work is limited by experiment and time, there is no enough time to continue optimization .We also hoped that there will be follow-up teams to continue to finish our models.