Difference between revisions of "Team:SCU-China/Demonstrate"

 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{SCU-China}}
 
 
<html>
 
<html>
 +
<head>
 +
    <title>Team:SCU-China - 2018</title>
  
 +
    <link rel="stylesheet" type="text/css"
 +
          href="https://2018.igem.org/wiki/index.php?title=Template:SCU-China/default_CSS&action=raw&ctype=text/css"/>
  
 +
    <script type="text/javascript"
 +
            src="https://2017.igem.org/Template:SCU_China/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
  
<div >
+
    <script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<h3>★  ALERT! </h3>
+
    <style>
<p>This page is used by the judges to evaluate your team for the <a href="https://2018.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2018.igem.org/Judging/Awards"> award listed below</a>. </p>
+
        * {
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2018.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
  
 +
        }
  
<div class="clear"></div>
+
        td {
 +
            color:#000000;
 +
        }
 +
        a:hover {
 +
            text-decoration: none;
 +
            cursor: pointer;
 +
        }
  
 +
        ul.navbar {
 +
            background: #3977DC;
 +
            width: 100%;
 +
            text-align: center;
 +
            display: inline-block;
 +
            margin: 0 0;
 +
        }
  
 +
        ul.navbar > li {
 +
            list-style: none;
 +
            display: inline-block;
 +
            font-size: 17px;
 +
            margin: .5em 1.5em;
 +
            line-height: 2em;
 +
            cursor: pointer;
 +
        }
  
<div class="column full_size">
+
        ul.navbar > li a {
<h1>Demonstrate</h1>
+
            color: #ffffff;
<h3>Gold Medal Criterion #4</h3>
+
        }
  
<p>
+
        ul.navbar li > ul {
Teams that can show their system working under real world conditions are usually good at impressing the judges in iGEM. To achieve gold medal criterion #4, convince the judges that your project works. There are many ways in which your project working could be demonstrated, so there is more than one way to meet this requirement. This gold medal criterion was introduced in 2016, so check our what 2016 teams did to achieve their gold medals!
+
            visibility: hidden;
</p>
+
            position: absolute;
 +
            background-color: #142098;
 +
            margin: 0 0;
 +
        }
  
<p>
+
        ul.navbar li:hover > ul {
Please see the <a href="https://2018.igem.org/Judging/Medals">2018 Medals Page</a> for more information.
+
            visibility: visible;
</p>
+
        }
  
 +
        ul.navbar > li ul li {
 +
            display: table;
 +
            margin: .2em .8em;
 +
        }
  
</div>
+
        ul.navbar > li ul li a {
 +
            color: #ffffff;
 +
        }
  
 +
        .head {
 +
            background: #0435AB;
 +
            font-size: 28px;
 +
            text-align: center;
 +
            line-height: 2em;
 +
        }
  
 +
        .sides {
 +
            display: inline-block;
 +
            position: absolute;
 +
            left: calc(50% - 82px);
 +
            top: calc(250px - 56px);
 +
        }
  
 +
        .content {
 +
            background: url("https://static.igem.org/mediawiki/2018/b/b1/T--SCU-China--backwhite.jpg");
 +
            padding: 1.2em 5em;
 +
        }
  
 +
        .main {
 +
            width:80%;
 +
            margin:4em auto 0;
 +
            line-height:2em;
 +
        }
 +
        .maincontent {
 +
            font-size:14px;
 +
        }
 +
        .text{
 +
          margin:2em 0;
 +
          font-size:18px;
 +
          font-family:times new roman;
 +
          line-height:1.5em;
 +
}
 +
        .subtitle {
 +
            color:#3977DC;
 +
            font-size:26px;
 +
            text-indent: 2.8em;
 +
        }
 +
        .footer {
 +
            background-color:#4455;
 +
            width:100%;
 +
            text-align:center;
 +
            font-style: normal;
 +
            color:#5B61B5;
 +
            font-size:14px;
 +
            padding:2.4em 0;
 +
        }
 +
    </style>
 +
</head>
  
 +
<body>
 +
<div style="width:100%">
 +
    <div>
 +
        <ul class="navbar" id="navbar">
 +
            <li><a href="https://2018.igem.org/Team:SCU-China">Home</a></li>
 +
            <li><a>Project</a>
 +
                <ul>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/project/overview">Overview</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/project/regulation">Precise Regulation</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/project/circuits">Logic Circuits</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/project/indigo">CRISProgrammer of Indigo</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/project/parts">Parts</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/project/interlab">Interlab</a></li>
 +
                </ul>
 +
            </li>
 +
            <li><a>Modeling</a>
 +
                <ul>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/modeling/prediction">Off Target Prediction</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/modeling/algorithm">Orthogonal promoter construction Algorithm</a></li>
 +
                </ul>
 +
            </li>
 +
            <li><a>Human practice</a>
 +
                <ul>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/practice/collaboration">Collaboration</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/practice/meet">Meet Up</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/practice/education">Education & Public</a></li>
 +
                </ul>
 +
            </li>
 +
            <li><a>Judging</a>
 +
                <ul>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/judging/human">Integrated Human Practice</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/judging/improve">Improve</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/judging/model">Model</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:SCU-China/judging/demonstrate">Demonstrate</a></li>
 +
                </ul>
 +
            </li>
 +
            <li><a href="https://2018.igem.org/Team:SCU-China/attribution">Attribution</a></li>
 +
            <li><a href="https://2018.igem.org/Team:SCU-China/safety">Safety</a></li>
 +
            <li><a href="https://2018.igem.org/Team:SCU-China/notebook">Notebook</a></li>
 +
        </ul>
 +
    </div>
 +
    <div class="head" >
 +
      <img src="https://static.igem.org/mediawiki/2018/5/52/T--SCU-China--headback.jpg" style="width:100%;">
 +
        <div class="headline sides">
 +
 +
        </div>
 +
    </div>
 +
    <div class="content">
 +
        <div class="main">
 +
            <div class="maincontent">
 +
                <div class="phrase">
 +
                    <div class = "text">
 +
                    We are devoting to build a CRISProgrammer regulatory platform, using which we can achieve complex metabolism pathway regulation, reduce the difficulty of transformation, even optimize some industrial production process by building synthetic circuits in microorganism.
 +
                    </div>
 +
                      <div class = "text">
 +
                      In our project, we are aiming to utilize the CRISProgrammer system in industrial production, and are constructing an adjustable platform of indigo bio-synthesis. For this purpose, we report the Indi.coli system to achieve the on/off (storage/dyeing) switch of indoxyl bio-synthesis pathway.
 +
                    </div>
 +
</br> </br>
 +
                    <div class="subtitle">The Application Module: Bistable Switch </div>
 +
</br></br><hr style="height:1px;border:none;border-top:1px solid #555555;" /></br>
 +
                      </br> </br>
 +
 +
                    <div class = "text">
 +
                    According to the design of indigo expression, our team deliberately substitute the key enzymes with reporter genes. It looks like a ‘bistable switch’, having two kinds of output with correspondent input. Our bistable switch consists of two main modules, the regulatory module and the reporter module (Figure 1).
 +
                    </div>
 +
</br>
 +
                      <div style="text-align:center;"><img style = "width:480px" src="https://static.igem.org/mediawiki/2018/0/0f/T--SCU-China--indigo15.jpg"/></div>
 +
</br>
 +
 +
                      <div class = "text"> The bistable switch is designed as a minimal circuit to demonstrate the feasibility to build a whole CRISProgrammer system, which enables orthogonal regulation and demonstrate the regulation process of indigo synthesis. The detailed working mechanism is showed in the Logic Circuit Page.
 +
                        </div>
 +
</br></br>
 +
                    <div class="subtitle">What has been achieved </div>
 +
</br></br><hr style="height:1px;border:none;border-top:1px solid #555555;" /></br>
 +
 +
                    <div class = "text"> Since then, we have built every component of the indi. coli system and verified their functionality. Three key enzymes in indigo bio-synthesis pathway [*], which can catalyze the reaction from tryptophan into indican, have been successfully expressed in E. coli BL21 strain, with their enzymatic activity proved individually. Surprisingly, indigo has been successfully produced in our lab under the catalytic function of FMO (flavin containing monooxygenase).
 +
                    </div>
 +
 +
                <div class = "text"> 
 +
                    What’s more, considering the difficulties of building the big-size Indi. coli system, we choose to demonstrate the feasibility of CRISProgrammer system using reporter proteins as alternatives of indigo synthesis related enzymes. Several basic logic circuits, including a bistable switch, T7 promoter-gRNA (J23)-J23100-GFP circuit, T7 promoter-gRNA (PAM)-PAM-GFP circuit, etc., have already been constructed to test whether the sgRNA/ dCas9 system can function well and orthogonality in engineered bacteria.
 +
                </div>
 +
                <div class = "text">
 +
                At the present stage, we are devoting to co-transform the regulator-reporter circuits introduced above and the dCas9 protein into the E. coli BL21 strains for us to carry out the functional test. Considering the low efficiency of con-transformation, we will probably choose to assemble the basic logic circuits with the dCas9 expression vector in our next step.
 +
              </div>
 +
 +
</br>
 +
</br>
 +
</br></br>
 +
                    <div class="subtitle">Future Work
 +
Adjustable Bio-synthesis of Indigo
 +
                    </div>
 +
</br></br><hr style="height:1px;border:none;border-top:1px solid #555555;" /></br>
 +
</br></br>
 +
                      <div class="text">
 +
                      We have successfully got our indigo produced by E. coli (Figure 2), and great potential has been presented that it can be efficiently regulated by the CRISProgrammer system. Thus, in next step, we are going to replace the reporter genes with the coding sequence of three enzymes (FMO, UGT, and BGL), and renovation our origin bistable switch, to achieve the application of adjustable indigo biosynthesis in E.coli.
 +
                     
 +
</br>  </br>
 +
 +
                  <div style="text-align:center;"><img style = "width:480px" src="https://static.igem.org/mediawiki/2018/9/97/T--SCU-China--demos2.jpg"/>    </div>
 +
               
 +
 +
</br>
 +
 +
                  <div style="text-align:center;"><img style = "width:480px" src="https://static.igem.org/mediawiki/2018/4/4d/T--SCU-China--demos3.jpg"/>    </div>
 +
</br>
 +
                <div style="text-align:center;"><img style = "width:480px" src="https://static.igem.org/mediawiki/2018/b/ba/T--SCU-China--demos4.jpg"/>      </div>
 +
               
 +
                 
 +
                </div>
 +
                    <div class="text"> [*] FMO, flavin containing monooxygenase; UGT, UDP-glucosyltransferase; BGL, β-glucosidase </div>
 +
                </div>
 +
        </div>
 +
    </div>
 +
 +
</div>
 +
    <div class="footer">SCU_China 2018 iGEM Team</div>
 +
</body>
 +
<script>
 +
    window.onscroll = function(){
 +
        var t = document.documentElement.scrollTop || document.body.scrollTop;
 +
        var navbar = document.getElementById("navbar");
 +
        if(t>500){
 +
            navbar.setAttribute('style','position:fixed;');
 +
        }else {
 +
            navbar.setAttribute('style','position:relative');
 +
        }
 +
    }
 +
</script>
 
</html>
 
</html>

Latest revision as of 02:10, 18 October 2018

Team:SCU-China - 2018

We are devoting to build a CRISProgrammer regulatory platform, using which we can achieve complex metabolism pathway regulation, reduce the difficulty of transformation, even optimize some industrial production process by building synthetic circuits in microorganism.
In our project, we are aiming to utilize the CRISProgrammer system in industrial production, and are constructing an adjustable platform of indigo bio-synthesis. For this purpose, we report the Indi.coli system to achieve the on/off (storage/dyeing) switch of indoxyl bio-synthesis pathway.


The Application Module: Bistable Switch






According to the design of indigo expression, our team deliberately substitute the key enzymes with reporter genes. It looks like a ‘bistable switch’, having two kinds of output with correspondent input. Our bistable switch consists of two main modules, the regulatory module and the reporter module (Figure 1).


The bistable switch is designed as a minimal circuit to demonstrate the feasibility to build a whole CRISProgrammer system, which enables orthogonal regulation and demonstrate the regulation process of indigo synthesis. The detailed working mechanism is showed in the Logic Circuit Page.


What has been achieved




Since then, we have built every component of the indi. coli system and verified their functionality. Three key enzymes in indigo bio-synthesis pathway [*], which can catalyze the reaction from tryptophan into indican, have been successfully expressed in E. coli BL21 strain, with their enzymatic activity proved individually. Surprisingly, indigo has been successfully produced in our lab under the catalytic function of FMO (flavin containing monooxygenase).
What’s more, considering the difficulties of building the big-size Indi. coli system, we choose to demonstrate the feasibility of CRISProgrammer system using reporter proteins as alternatives of indigo synthesis related enzymes. Several basic logic circuits, including a bistable switch, T7 promoter-gRNA (J23)-J23100-GFP circuit, T7 promoter-gRNA (PAM)-PAM-GFP circuit, etc., have already been constructed to test whether the sgRNA/ dCas9 system can function well and orthogonality in engineered bacteria.
At the present stage, we are devoting to co-transform the regulator-reporter circuits introduced above and the dCas9 protein into the E. coli BL21 strains for us to carry out the functional test. Considering the low efficiency of con-transformation, we will probably choose to assemble the basic logic circuits with the dCas9 expression vector in our next step.




Future Work Adjustable Bio-synthesis of Indigo






We have successfully got our indigo produced by E. coli (Figure 2), and great potential has been presented that it can be efficiently regulated by the CRISProgrammer system. Thus, in next step, we are going to replace the reporter genes with the coding sequence of three enzymes (FMO, UGT, and BGL), and renovation our origin bistable switch, to achieve the application of adjustable indigo biosynthesis in E.coli.



[*] FMO, flavin containing monooxygenase; UGT, UDP-glucosyltransferase; BGL, β-glucosidase