Difference between revisions of "Team:SCU-China"

 
(16 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
     <link rel ="stylesheet" type ="text/css" href ="https://2018.igem.org/wiki/index.php?title=Template:SCU-China/default_CSS&action=raw&ctype=text/css"/>
 
     <link rel ="stylesheet" type ="text/css" href ="https://2018.igem.org/wiki/index.php?title=Template:SCU-China/default_CSS&action=raw&ctype=text/css"/>
 
    <script type="text/javascript" src="https://2017.igem.org/Template:SCU_China/bootstrap_min_js?action=raw&amp;ctype=text/javascript"></script>
 
  
 
     <style>
 
     <style>
Line 14: Line 12:
 
         p {
 
         p {
 
             margin: 0 0;
 
             margin: 0 0;
        }
 
 
        .banner {
 
            width:100%;
 
            background: transparent url(https://static.igem.org/mediawiki/2018/5/52/T--SCU-China--headback.jpg) no-repeat scroll calc(50vw - 980px);
 
            height: 500px;
 
 
         }
 
         }
  
Line 63: Line 55:
 
         ul.navbar > li ul li a {
 
         ul.navbar > li ul li a {
 
             color:#ffffff;
 
             color:#ffffff;
 +
        }
 +
        .content
 +
      {
 +
            background: linear-gradient(to bottom, #106AE4, #0f6EEC);
 +
            padding: 1.2em 5em;
 
         }
 
         }
  
Line 69: Line 66:
 
         }
 
         }
 
         .contenthead {
 
         .contenthead {
             font-size: 36px;
+
             font-size: 4.2em;
             color: #ffffff;
+
             color:#ffffff;
 
             text-align: center;
 
             text-align: center;
             letter-spacing: .2em;
+
             letter-spacing: .1em;
            line-height: 36px;
+
             margin: 1.2em auto 0;
             margin: 0 auto;
+
 
             padding: 1em 0 0;
 
             padding: 1em 0 0;
 
         }
 
         }
 
         .block > .phrase{
 
         .block > .phrase{
             width: 74%;
+
             width: 980px;
 +
            color:#ffffff;
 
             margin: 2em auto 0;
 
             margin: 2em auto 0;
            color: #ffffff;
 
 
             font-size: 15px;
 
             font-size: 15px;
 
             word-wrap: break-word;
 
             word-wrap: break-word;
 
             line-height:1.4em;
 
             line-height:1.4em;
 +
         
 
         }
 
         }
  
 
         .footer {
 
         .footer {
            background-color:#142098;
+
            background-color:#142098;
 
             width:100%;
 
             width:100%;
 
             text-align:center;
 
             text-align:center;
Line 93: Line 90:
 
             color:#5B61B5;
 
             color:#5B61B5;
 
             font-size:14px;
 
             font-size:14px;
             padding:14px 0;
+
             padding:2.4em 0;
 
+
 
         }
 
         }
 
     </style>
 
     </style>
Line 101: Line 97:
 
<body>
 
<body>
 
<div style="width:100%">
 
<div style="width:100%">
     <div >
+
     <div>
 
         <img style="width:100%;" src="https://static.igem.org/mediawiki/2018/5/52/T--SCU-China--headback.jpg" />
 
         <img style="width:100%;" src="https://static.igem.org/mediawiki/2018/5/52/T--SCU-China--headback.jpg" />
 
     </div>
 
     </div>
Line 111: Line 107:
 
                         <ul>
 
                         <ul>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/overview">Overview</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/overview">Overview</a></li>
                            <li><a href="https://2018.igem.org/Team:SCU-China/project/interlab">Interlab</a></li>
 
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/regulation">Precise Regulation</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/regulation">Precise Regulation</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/circuits">Logic Circuits</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/circuits">Logic Circuits</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/indigo">CRISProgrammer of Indigo</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/indigo">CRISProgrammer of Indigo</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/parts">Parts</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/project/parts">Parts</a></li>
 +
                            <li><a href="https://2018.igem.org/Team:SCU-China/project/interlab">Interlab</a></li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
Line 126: Line 122:
 
                     <li><a>Human practice</a>
 
                     <li><a>Human practice</a>
 
                         <ul>
 
                         <ul>
                            <li><a href="https://2018.igem.org/Team:SCU-China/practice/hp">Integrated Human Practice</a></li>
+
                         
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/practice/collaboration">Collaboration</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/practice/collaboration">Collaboration</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/practice/meet">Meet Up</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/practice/meet">Meet Up</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/practice/education">Education & Public</a></li>
 
                             <li><a href="https://2018.igem.org/Team:SCU-China/practice/education">Education & Public</a></li>
 +
                        </ul>
 +
                    </li>
 +
                    <li><a>Judging</a>
 +
                        <ul>
 +
                            <li><a href="https://2018.igem.org/Team:SCU-China/judging/human">Integrated Human Practice</a></li>
 +
                            <li><a href="https://2018.igem.org/Team:SCU-China/judging/improve">Improve</a></li>
 +
                            <li><a href="https://2018.igem.org/Team:SCU-China/judging/model">Model</a></li>
 +
                            <li><a href="https://2018.igem.org/Team:SCU-China/judging/demonstrate">Demonstrate</a></li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
 
                     <li><a href="https://2018.igem.org/Team:SCU-China/attribution">Attribution</a></li>
 
                     <li><a href="https://2018.igem.org/Team:SCU-China/attribution">Attribution</a></li>
                    <li><a href="https://2018.igem.org/Team:SCU-China/about">About us</a></li>
 
 
                     <li><a href="https://2018.igem.org/Team:SCU-China/safety">Safety</a></li>
 
                     <li><a href="https://2018.igem.org/Team:SCU-China/safety">Safety</a></li>
 
                     <li><a href="https://2018.igem.org/Team:SCU-China/notebook">Notebook</a></li>
 
                     <li><a href="https://2018.igem.org/Team:SCU-China/notebook">Notebook</a></li>
Line 140: Line 143:
 
         <div class="content">
 
         <div class="content">
 
             <div class="block">
 
             <div class="block">
                <div class="contenthead">Story</div>
+
 
 
                 <div class="phrase">Inspired by the modularization, call-and-return and do-not-reinvent-the-wheel philosophy in
 
                 <div class="phrase">Inspired by the modularization, call-and-return and do-not-reinvent-the-wheel philosophy in
 
                     computer programming design, we come up with the idea of using the dCas9 protein to manipulate
 
                     computer programming design, we come up with the idea of using the dCas9 protein to manipulate
Line 149: Line 152:
 
                     sgDNAs targeting the desired proteins into the library strain, and then utilizing the dCas9-sgRNA
 
                     sgDNAs targeting the desired proteins into the library strain, and then utilizing the dCas9-sgRNA
 
                     complex to initiate the transcription then expression of the particular protein.
 
                     complex to initiate the transcription then expression of the particular protein.
                </div>
 
                <div class="phrase">To show the power and practicality of the design above, our team aims to test the system by using
 
                    fluorescent proteins and apply it to a sustainable dyeing strategy. Indigo, as a current widely used
 
                    dye, its production, transportation and using employs many toxic and not environment-friendly chemicals.
 
                    However, the enzymes that catalyze the relevant reactions are found and the biological solution seems
 
                    promising. We design a strategy that not only circumvents the use of toxic reagents for indigo chemical
 
                    synthesis but also removes the need for a reducing agent for dye solubilization. Our engineered E.coli
 
                    will be transformed with the above proteins and become a manipulatable library for us. This project
 
                    will provide a fundamental contribution to the construction of engineering bacteria and clean manufacturing.
 
                </div>
 
                <div>以下是重复的用于测试。。</div>
 
                <div class="phrase">To show the power and practicality of the design above, our team aims to test the system by using
 
                    fluorescent proteins and apply it to a sustainable dyeing strategy. Indigo, as a current widely used
 
                    dye, its production, transportation and using employs many toxic and not environment-friendly chemicals.
 
                    However, the enzymes that catalyze the relevant reactions are found and the biological solution seems
 
                    promising. We design a strategy that not only circumvents the use of toxic reagents for indigo chemical
 
                    synthesis but also removes the need for a reducing agent for dye solubilization. Our engineered E.coli
 
                    will be transformed with the above proteins and become a manipulatable library for us. This project
 
                    will provide a fundamental contribution to the construction of engineering bacteria and clean manufacturing.
 
                </div>
 
                <div class="phrase">To show the power and practicality of the design above, our team aims to test the system by using
 
                    fluorescent proteins and apply it to a sustainable dyeing strategy. Indigo, as a current widely used
 
                    dye, its production, transportation and using employs many toxic and not environment-friendly chemicals.
 
                    However, the enzymes that catalyze the relevant reactions are found and the biological solution seems
 
                    promising. We design a strategy that not only circumvents the use of toxic reagents for indigo chemical
 
                    synthesis but also removes the need for a reducing agent for dye solubilization. Our engineered E.coli
 
                    will be transformed with the above proteins and become a manipulatable library for us. This project
 
                    will provide a fundamental contribution to the construction of engineering bacteria and clean manufacturing.
 
                </div>
 
                <div class="phrase">To show the power and practicality of the design above, our team aims to test the system by using
 
                    fluorescent proteins and apply it to a sustainable dyeing strategy. Indigo, as a current widely used
 
                    dye, its production, transportation and using employs many toxic and not environment-friendly chemicals.
 
                    However, the enzymes that catalyze the relevant reactions are found and the biological solution seems
 
                    promising. We design a strategy that not only circumvents the use of toxic reagents for indigo chemical
 
                    synthesis but also removes the need for a reducing agent for dye solubilization. Our engineered E.coli
 
                    will be transformed with the above proteins and become a manipulatable library for us. This project
 
                    will provide a fundamental contribution to the construction of engineering bacteria and clean manufacturing.
 
                </div>
 
                <div class="phrase">To show the power and practicality of the design above, our team aims to test the system by using
 
                    fluorescent proteins and apply it to a sustainable dyeing strategy. Indigo, as a current widely used
 
                    dye, its production, transportation and using employs many toxic and not environment-friendly chemicals.
 
                    However, the enzymes that catalyze the relevant reactions are found and the biological solution seems
 
                    promising. We design a strategy that not only circumvents the use of toxic reagents for indigo chemical
 
                    synthesis but also removes the need for a reducing agent for dye solubilization. Our engineered E.coli
 
                    will be transformed with the above proteins and become a manipulatable library for us. This project
 
                    will provide a fundamental contribution to the construction of engineering bacteria and clean manufacturing.
 
                </div>
 
                <div class="phrase">To show the power and practicality of the design above, our team aims to test the system by using
 
                    fluorescent proteins and apply it to a sustainable dyeing strategy. Indigo, as a current widely used
 
                    dye, its production, transportation and using employs many toxic and not environment-friendly chemicals.
 
                    However, the enzymes that catalyze the relevant reactions are found and the biological solution seems
 
                    promising. We design a strategy that not only circumvents the use of toxic reagents for indigo chemical
 
                    synthesis but also removes the need for a reducing agent for dye solubilization. Our engineered E.coli
 
                    will be transformed with the above proteins and become a manipulatable library for us. This project
 
                    will provide a fundamental contribution to the construction of engineering bacteria and clean manufacturing.
 
 
                 </div>
 
                 </div>
 
                 <div class="phrase">To show the power and practicality of the design above, our team aims to test the system by using
 
                 <div class="phrase">To show the power and practicality of the design above, our team aims to test the system by using

Latest revision as of 03:03, 18 October 2018

Team:SCU-China - 2018

Inspired by the modularization, call-and-return and do-not-reinvent-the-wheel philosophy in computer programming design, we come up with the idea of using the dCas9 protein to manipulate the expression of proteins and implement complex logic in a single E. coli cell this year. we want to construct versatile “library strains” that contains many, and maybe redundant coding sequences of commonly used proteins which are dormant by default; when we need to use the function of particular already coded proteins, we just simply transform a much smaller “Minimid” containing sgDNAs targeting the desired proteins into the library strain, and then utilizing the dCas9-sgRNA complex to initiate the transcription then expression of the particular protein.
To show the power and practicality of the design above, our team aims to test the system by using fluorescent proteins and apply it to a sustainable dyeing strategy. Indigo, as a current widely used dye, its production, transportation and using employs many toxic and not environment-friendly chemicals. However, the enzymes that catalyze the relevant reactions are found and the biological solution seems promising. We design a strategy that not only circumvents the use of toxic reagents for indigo chemical synthesis but also removes the need for a reducing agent for dye solubilization. Our engineered E.coli will be transformed with the above proteins and become a manipulatable library for us. This project will provide a fundamental contribution to the construction of engineering bacteria and clean manufacturing.