Difference between revisions of "Team:UESTC-China/Demonstrate"

 
(128 intermediate revisions by 8 users not shown)
Line 10: Line 10:
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Template:UESTC-China/CSS/zzcs?action=raw&amp;ctype=text/css">
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Template:UESTC-China/CSS/zzcs?action=raw&amp;ctype=text/css">
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Template:UESTC-China/CSS/bootnav?action=raw&amp;ctype=text/css">
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Template:UESTC-China/CSS/bootnav?action=raw&amp;ctype=text/css">
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Template:UESTC-China/CSS/xuanfucss?action=raw&amp;ctype=text/css" />
+
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Template:UESTC-China/CSS/zhengwen?action=raw&amp;ctype=text/css">
 
<style type="text/css">
 
<style type="text/css">
.hehe{
+
 
    height: 60px;
+
    color:#fff;
+
    font-size:12px;
+
    position:relative;
+
    z-index:inherite;
+
    background-color:#31b0d5;
+
    margin-top:30px;
+
    margin-bottom:-30px
+
}
+
 
.team .row{
 
.team .row{
 
     margin-right:  0px;
 
     margin-right:  0px;
Line 45: Line 36:
 
nav.navbar.bootsnav{
 
nav.navbar.bootsnav{
 
border: none;
 
border: none;
margin-bottom: 150px;
 
 
}
 
}
 
.navbar-nav{
 
.navbar-nav{
Line 77: Line 67:
 
font-weight: 500;
 
font-weight: 500;
 
position: absolute;
 
position: absolute;
top: 35%;
+
top: 30%;
right: 10%;
+
right: 8%;
 
transition: all 0.4s ease 0s;
 
transition: all 0.4s ease 0s;
 
}
 
}
Line 100: Line 90:
 
nav.navbar.bootsnav ul.nav > li > a{ margin: 0; }
 
nav.navbar.bootsnav ul.nav > li > a{ margin: 0; }
 
}
 
}
         .zhengwen{
+
          
            text-indent:30.0pt;
+
            line-height:180%;
+
            font-family:'Candara',sans-serif;
+
            font-size:15.0pt;
+
            color:black;
+
            background:white;
+
            text-align:justify;
+
        }
+
        .zhengwen p{
+
            text-indent:30.0pt;
+
            line-height:180%;
+
            font-family:'Candara',sans-serif;
+
            font-size:15.0pt;
+
            color:black;
+
            background:white;
+
        }
+
 
         .bigtitle{
 
         .bigtitle{
 
             line-height:200%;
 
             line-height:200%;
Line 122: Line 96:
 
             font-family:'Cooper Black',serif;
 
             font-family:'Cooper Black',serif;
 
             font-size:23.0pt;
 
             font-size:23.0pt;
             color:#5e5e5e;
+
             color: #fff;
             background:#d5faff;
+
             background: #968569;
 
             border-radius: 9px;
 
             border-radius: 9px;
 
             margin-bottom: 15px;
 
             margin-bottom: 15px;
 
         }
 
         }
         .smtitle{
+
          
            line-height:200%;
+
            font-family:'Cooper Black',serif;
+
</style>
            font-size:16.0pt;
+
 
            color:black;
+
            background:white;
+
        }
+
        .xstitle{
+
            font-family:'Candara',sans-serif;
+
            font-size:15.0pt;
+
            color:black;
+
            background:white;
+
            line-height:180%;
+
        }
+
        @media only screen and (max-width: 768px) {
+
  .hide-on-med-and-down {
+
    display: none !important;
+
  }
+
}
+
        .scroll{
+
width:100px;
+
height:130px;
+
color:#fff;
+
line-height:80px;
+
text-align:center;
+
position:fixed;
+
right:30px;
+
bottom:80px;
+
cursor:pointer;
+
font-size:14px;
+
                z-index:100;
+
}
+
        @media only screen and (max-width: 768px) {
+
  .scroll {
+
    display: none !important;
+
  }
+
  
</style>
 
<script type="text/javascript" src="https://2018.igem.org/Template:UESTC-China/Javascript/jquery?action=raw&amp;ctype=text/javascript"></script>
 
<script type="text/javascript">
 
$(document).ready(function(e) {
 
t = $('.fixed').offset().top;
 
mh = $('.main').height();
 
fh = $('.fixed').height();
 
$(window).scroll(function(e){
 
s = $(document).scrollTop();
 
if(s > t - 130){
 
$('.fixed').css('position','fixed');
 
                        $('.fixed').css('top','130px');
 
}else{
 
$('.fixed').css('position','');
 
}
 
})
 
});
 
</script>
 
 
</head>
 
</head>
 
<body>
 
<body>
  
 
<div class="scroll" id="scroll" style="display:none; ">
 
<div class="scroll" id="scroll" style="display:none; ">
<img src="https://static.igem.org/mediawiki/2018/7/7d/T--UESTC-China--up.png" width="100%">
+
<img src="https://static.igem.org/mediawiki/2018/thumb/a/a3/T--UESTC-China--up3.png/240px-T--UESTC-China--up3.png" width="100%">
 
</div>
 
</div>
 +
  
  
Line 202: Line 127:
 
<div class="collapse navbar-collapse" id="navbar-menu" style="border-bottom-style:solid; border-bottom-width:1px" style="z-index:9999">
 
<div class="collapse navbar-collapse" id="navbar-menu" style="border-bottom-style:solid; border-bottom-width:1px" style="z-index:9999">
 
<ul class="nav navbar-nav" data-in="fadeInDown" data-out="fadeOutUp">
 
<ul class="nav navbar-nav" data-in="fadeInDown" data-out="fadeOutUp">
                                                         <li><a href="#">HOME</a></li>
+
                                                         <li><a href="https://2018.igem.org/Team:UESTC-China">HOME</a></li>
<li><a href="#">ACHIEVEMENT</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/achievement">ACHIEVEMENT</a></li>
 
<li class="dropdown">
 
<li class="dropdown">
 
<a href="#" class="dropdown-toggle" data-toggle="dropdown">PROJECT</a>
 
<a href="#" class="dropdown-toggle" data-toggle="dropdown">PROJECT</a>
 
<ul class="dropdown-menu animated fadeOutUp">
 
<ul class="dropdown-menu animated fadeOutUp">
<li><a href="#">Introduction</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/Description">Description</a></li>
<li><a href="#">Design</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/Design">Design</a></li>
<li><a href="#">Demonstrate</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/Demonstrate">Demonstrate</a></li>
<li><a href="#">Part</a></li>
+
                                                                       
 +
</ul>
 +
</li>
 +
                                                        <li class="dropdown">
 +
<a href="#" class="dropdown-toggle" data-toggle="dropdown">PART</a>
 +
<ul class="dropdown-menu animated fadeOutUp">
 +
<li><a href="https://2018.igem.org/Team:UESTC-China/Parts">Basic Part</a></li>
 +
<li><a href="https://2018.igem.org/Team:UESTC-China/Improve">Improve Part</a></li>
 +
                                                                </ul> 
 +
        </li>
 +
<li class="dropdown">
 +
<a href="#" class="dropdown-toggle" data-toggle="dropdown">MODEL</a>
 +
<ul class="dropdown-menu animated fadeOutUp">
 +
 +
<li><a href="https://2018.igem.org/Team:UESTC-China/Model">Overview</a></li>
 +
<li><a href="https://2018.igem.org/Team:UESTC-China/Model_butanol">Butanol System Model</a></li>
 +
                                                                        <li><a href="https://2018.igem.org/Team:UESTC-China/Model_h2">Hydrogen System Model</a></li>
 
</ul>
 
</ul>
 
</li>
 
</li>
<li><a href="#">MODELING</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/Attributions">ATTRIBUTIONS</a></li>
<li><a href="#">ATTRIBUTIONS</a></li>
+
 
<li class="dropdown">
 
<li class="dropdown">
 
<a href="#" class="dropdown-toggle" data-toggle="dropdown">H&nbsp;&nbsp;P</a>
 
<a href="#" class="dropdown-toggle" data-toggle="dropdown">H&nbsp;&nbsp;P</a>
 
<ul class="dropdown-menu animated fadeOutUp">
 
<ul class="dropdown-menu animated fadeOutUp">
<li><a href="#">Our Story</a></li>
+
<li><a href="#">Supporting Research</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/Human_Practices">Integrate Human Practice</a></li>
<li><a href="#">Engagement</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/Public_Engagement">Engagement</a></li>
 +
                                                                        <li><a href="https://2018.igem.org/Team:UESTC-China/Software">Gene Card Online</a></li>
 
</ul>
 
</ul>
 
</li>
 
</li>
 
<li class="dropdown">
 
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">TEAM</a>
+
<a href="https://2018.igem.org/Team:UESTC-China/team" class="dropdown-toggle" data-toggle="dropdown">TEAM</a>
 
<ul class="dropdown-menu animated fadeOutUp">
 
<ul class="dropdown-menu animated fadeOutUp">
<li><a href="#">Team Introduction</a></li>
+
                                                                        <li><a href="https://2018.igem.org/Team:UESTC-China/team">Team</a></li>
<li><a href="#">Collaborations</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/team_teamintroduction">Team Introduction</a></li>
 +
<li><a href="https://2018.igem.org/Team:UESTC-China/Collaborations">Collaborations</a></li>
 
</ul>
 
</ul>
 
</li>
 
</li>
Line 233: Line 175:
 
<a href="#" class="dropdown-toggle" data-toggle="dropdown">NOTEBOOK</a>
 
<a href="#" class="dropdown-toggle" data-toggle="dropdown">NOTEBOOK</a>
 
<ul class="dropdown-menu animated fadeOutUp">
 
<ul class="dropdown-menu animated fadeOutUp">
<li><a href="#">Day Note</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/Notebook">Day Note</a></li>
<li><a href="#">protocol</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/notebook_protocol">Protocol</a></li>
<li><a href="#">safety</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/Safety">Safety</a></li>
<li><a href="#">..........</a></li>
+
<li><a href="https://2018.igem.org/Team:UESTC-China/InterLab">Interlab</a></li>
<li><a href="#">........</a></li>
+
 
</ul>
 
</ul>
 
</li>
 
</li>
 +
                                                   
 
</ul>
 
</ul>
 
                                              
 
                                              
Line 246: Line 188:
 
</div>
 
</div>
 
                     <div class="logo" style="height:45px; width:83.3px; position: absolute;right: 20px;z-index: 9999;top: 10px;">
 
                     <div class="logo" style="height:45px; width:83.3px; position: absolute;right: 20px;z-index: 9999;top: 10px;">
                         <a href="#">
+
                         <a href="https://2018.igem.org/Team:UESTC-China">
 
    <img src="https://static.igem.org/mediawiki/2018/b/b2/T--UESTC-China--logoyuan.gif" width="100" height="100" >
 
    <img src="https://static.igem.org/mediawiki/2018/b/b2/T--UESTC-China--logoyuan.gif" width="100" height="100" >
 
</a>
 
</a>
Line 253: Line 195:
 
</div>
 
</div>
 
</div>
 
</div>
 +
  
 
<div class="team" style="margin-top:-30px; position:relative; width:100%; z-index:1; background-color:#fff">
 
<div class="team" style="margin-top:-30px; position:relative; width:100%; z-index:1; background-color:#fff">
Line 259: Line 202:
 
     </div>
 
     </div>
  
     <div class="neirong" style="position:relative; z-index:1 ;padding:50px 8%; background-color:#fff">
+
     <div class="neirong" style="position:relative; z-index:1 ;padding:50px 8% 50px 1%; background-color:#fff">
        <div class="row member">
+
<div class="row member">
           
+
            <div class="col-md-3 col-sm-4">
+
              <div class="fixed">
+
              <menu id="tocc" class="hide-on-med-and-down" style="padding: 0.1px; left: 80px; z-index:1; font-family:'Candara',sans-serif;">
+
                <h2><strong>Attribution</strong></h3>
+
                <ul>
+
                    <li><a href="#1" style="color: black;">Attribution</a></li>
+
                    <li><a href="#2" style="color: black;">Advisor</a></li>
+
                    <li><a href="#3" style="color: black;">PI</a></li>
+
                    <li><a href="#4" style="color: black;">Acknowledgement</a></li>
+
                   
+
         
+
                </ul>
+
  
              </menu>
+
<div class="col-md-3 col-sm-4">
              </div>
+
                    <div class="fixed" style="position:fixed; top:150px; ">
            </div>
+
                        <div class="fl_l"><h3>Demonstrate</h3></div>
            <div class="main col-md-9 col-sm-8 col-xs-12">
+
<menu id="tocc" class="hide-on-med-and-down" style="padding: 0.1px; left: 0px; z-index:1; font-family:'Candara',sans-serif;">
<div class="bigtitle" id="1">
+
                             
    Attribution
+
<ul class="fl_l" style="margin-top:200px; opacity:0;  
   
+
</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Team Leader</div>
+
<div class="zhengwen">Jianzhe Yang and Changyu Li are our team leaders. As team leaders, they were responsible for the coordination of the team, and supervised experimental details to promote the experimental process. At the meantime, Jianzhe Yang contacted with biological companies to buy related reagents. The role Changyu Li played in the experiment was mainly to finish the construction and verification of vectors.</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Part Construction & Interlab</div>
+
<div class="zhengwen">Changyu Li, Huishuang Tan, Shizhi Ding, Yinsong Xu, Yansong Wang and Yetao Zou all contributed to part construction. All parts that need to submit were constructed by them.  Additionally, Shizhi Ding and Yinsong Xu were both responsible for interlab and making great effort in it.</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Experiments in Straw Degradation</div>
+
<div class="zhengwen">Shizhi Ding and Yinsong Xu were mainly responsible for experiments in straw degradation. They construct the plasmid of straw degradation and conduct it into different E. coli strains. For the final product in this step, they finish the detection of ferulic acid by gas chromatography as well as xylose and glucose qualitatively by TLCA</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Experiments in Butanol Production</div>
+
<div class="zhengwen">Changyu Li and Huishuang Tan were mainly responsible for experiments in butanol production. Additionally, they measured the titer of butanol by gas chromatography. They also studied the improvement of the resistance of E. coli to butanol by GroESL.</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Cellulose Enzyme Assay</div>
+
<div class="zhengwen">Yetao Zou and Liang Zhao were mainly responsible for enzyme assay. They detected the activity and the extracellular expression of cellulose. </div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Experiments in Hydrogen Production</div>
+
<div class="zhengwen">Jiayi Yin and Yansong Wang were mainly responsible for experiments in hydrogen production. They construct the plasmid of straw degradation and conduct it into different E. coli strains. In addition, they finish the detection of Hydrogen by gas chromatography and another team member, Qi Wang set up a hydrogen collection device.</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Human Practices</div>
+
<div class="zhengwen">Yuxian Zhang, Longjing Pan, Jianzhe Yang were mainly responsible for human practices and Jianzhe Yang, Changyu Li, Yinsong Xu, Xiang Zhou and Qi Wang also make contribution to it. They had made the following contributions :</div>
+
<div class="xstitle"><strong>Support project:</strong></div>
+
<div class="zhengwen">Longjing Pan and Yuxian Zhang carried out a variety of questionnaires to survey the current situation of treating straw and citizen’s attitude toward clean energy. To make our project more practical, they interact with expert in Biogas Institute of Ministry of Agriculture and Rural Affairs to learn more information about agricultural waste and bioenergy. They also interviewed synthetic biology expert, Dr. Junbiao Dai to optimize our pathway.</div>
+
<div class="xstitle"><strong>Public Engagement:</strong></div>
+
<div class="zhengwen">Yuxian Zhang and Changyu Li organized a large event of Education of Public Engagement called “Gene go”, interacting with more than 300 families in Sichuan Science and Technology Museum. They are also making effort in high school students, inspiring their interest in synthetic biology. There are other team members designed some product such as “Gene Card” online programed by Xiang Zhou and Qi Wang, Crazy Lab designed by Yinsong Xu and Plasmid Rubik made by Longjing Pan. Collaboration and meet-up is in the charge of Yuxian Zhang and Jianzhe Yang to combine universities to solve the problems that was hardly solved by themselves.</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Modeling</div>
+
<div class="zhengwen">Zijian Wu was mainly responsible for modeling. In order to maximize the production of butanol and hydrogen, it is necessary to optimize the fermentation of butanol and hydrogen. He first screened out the significant influence factors of the fermentation reaction. Next, he used response surface methodology to establish a functional relationship between the product and the significant influence factor. He used Box-Behnken to design test points to get the data he needed. He finally found the optimum conditions for the fermentation reaction.</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Art Design</div>
+
<div class="zhengwen">Xieyi Liu and Jiayi Yin were mainly responsible for art design. As art designers, they focused on cooperation and contacted with Human Practice, Wiki and experiment. Their work included our team logo, team uniform, the design of the page and illustrations of Wiki as well as the posters and PPTs required for meetings such as Southwest Alliance and CCiC. They also joined in the design of our educational product, such as “Crazy Lab” etc.</div>
+
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Wiki</div>
+
<div class="zhengwen">Qichen Pan was mainly responsible for the establishment of our Wiki page. During the whole project, he warmly cooperated with art designers and designed a set of Wiki style. He was in charge of coding and debugging. Meanwhile, he collected project content from other members and delivered it to the website and ensured complete display of Wiki.</div>
+
<p id="2" class="konghang" style="text-indent:30.0pt;line-height:200%;"><span style="font-family:'Candara',sans-serif; font-size:15.0pt; color:black; ">&nbsp;</span></p>
+
  
<div class="bigtitle">
+
max-width: 350px;">
    Advisor
+
<li><a href="#">1.&nbsp;Pathway construction</a></li>
</div>
+
<li><a href="#">2.&nbsp;From straw to glucose</a></li>
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Binglin Liu</div>
+
<li><a href="#">3.&nbsp;Butanol production</a></li>
<div class="zhengwen">He taught us how to design construction and primer for vector, and checked the sequence of primers whether it’s right or not. He also guided us to finish the construction of vector efficiently by teaching us how to make Gibson assembly.</div>
+
<li><a href="#">4.&nbsp;Hydrogen production</a></li>
<p id="3" class="konghang" style="text-indent:30.0pt;line-height:200%;"><span style="font-family:'Candara',sans-serif; font-size:15.0pt; color:black; ">&nbsp;</span></p>
+
<li><a href="#">5.&nbsp;Work going on</a></li>
 +
<li><a href="#">6.&nbsp;References</a></li>
 +
</ul>
 +
</menu>
 +
                    </div>
 +
</div>
 +
<div class="main col-md-9 col-sm-8 col-xs-12" style="padding-left:80px;">
  
<div class="bigtitle">
+
<ul class="fl_r">
    PI
+
<li>
</div>
+
        <div class="bigtitle">
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Yong Zhang</div>
+
            1. Pathway construction
<div class="zhengwen">He was one of our instructors. He guided us to design the whole project and helped us to check construction strategy whether it’s feasible. Especially, he gave us very professional guidance on molecular cloning. He also helped us to comb the pathway and analyzed the result. What’s more, he gave some useful suggestions on wiki and presentation.</div>
+
        </div>
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Lixia Tang</div>
+
        <div class="zhengwen">
<div class="zhengwen">She was one of our instructors. She gave us some guidance on modeling. She also gave us a hand on experiment of protein expression and detection of enzyme activity. In addition, she helped us to make the data analysis. Moreover, she came up with a series of valuable advices about the design of wiki and ppt.</div>
+
            For efficient expression of multiple enzymes in <i>E. coli</i>, codon optimization of all target genes were performed before DNA synthesis. The obtained genes were subsequently cloned into different expression vectors by using Gibson Assembly and Golden Gate strategies. The resulting vectors piGEM2018-Module001, piGEM2018-Module002, and piGEM2018-Module003 are listed in Table 1.
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Xuelian Zheng</div>
+
        </div>
<div class="zhengwen">She was one of our instructors. She gave us a lot of suggestions in details during the process of design and experiments. She helped our team leader to coordinate the team works and had communication with each member friendly to appease our tension. She also raised some idea about the style of our wiki, poster, banner and so on.</div>
+
        <div class="xstitle">Table 1&nbsp;&nbsp;&nbsp;Illustration of the three constructed vectors.</div>
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Juan Feng</div>
+
        <div class="zhengwen">
<div class="zhengwen">She was one of our instructors. She was concerned with our interlab and gave us a lot of useful suggestions on it. Meanwhile, she gave us many theoretical guidance on modeling and taught us way of using various software to found model. She also gave us precious advices on TLC design.</div>
+
       
<p id="4" class="konghang" style="text-indent:30.0pt;line-height:200%;"><span style="font-family:'Candara',sans-serif; font-size:15.0pt; color:black; ">&nbsp;</span></p>
+
       
 +
       
 +
            <table class="table table-hover">
 +
                <tr><td>No.</td><td> Vector </td><td><i>E. coli</i> resistance</td><td> Description</td></tr>
 +
                <tr><td>1</td><td> piGEM2018-Module001</td><td> Amp </td><td>BBa_J23100-RBS-pelB+5D-Xyn10D-Fae1A-RBS-pelB+5D-Xyl3A-RBS-pelB+5D-Cex-RBS-pelB+5D-CenA-Ter</td></tr>
 +
                <tr><td>2</td><td> piGEM2018-Module002 </td><td>Kan </td><td>Ter-Ter-RBS-Fdh-RBS-FRE_adhE-FRE_ackA-RBS-AtoB-RBS-AdhE2-RBS-Crt-RBS-Hbd-Ter</td></tr>
 +
                <tr><td>3 </td><td>piGEM2018-Module003 </td><td>Kan </td><td>BBa_J23100-RBS-FhlA-RBS-HydA-Ter</td></tr>
  
<div class="bigtitle">
+
            </table>
     Acknowledgement
+
        </div>
 +
 
 +
        <div class="zhengwen">
 +
            Before DNA sequencing, those vectors were verified by restriction enzyme digestion. After electrophoresis analysis, the samples which contained the desired bands were selected and sent for sequencing. The sequencing results showed that all the above constructed vectors were successful. (Fig. 1)
 +
        </div>
 +
        <div class="chatu" style="padding:20px 0%;"><img src="https://static.igem.org/mediawiki/2018/f/fe/T--UESTC-China--dem2.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 1 Double restriction enzyme digestion of three constructed vectors analyzed by using agarose gel electrophoresis.
 +
        </div>
 +
        <div class="tu">(a) piGEM2018-Module001 digested by <i>Eco32</i>Ⅰ+<i>Nco</i>Ⅰ(lane 1), piGEM2018-Module001 digested by <i>Nco</i>Ⅰ+<i>Xho</i>Ⅰ(lane 2); </div>
 +
        <div class="tu">(b) piGEM2018-Module002 digested by <i>Pst</i>Ⅰ+<i>Kpn</i>Ⅰ(lane 1), piGEM2018-Module002 digested by <i>Hind</i>Ⅲ+<i>Kpn</i>Ⅰ(lane 2); </div>
 +
        <div class="tu">(c) piGEM2018-Module003 digested by <i>EcoR</i>Ⅰ+<i>Nco</i>Ⅰ(lane 1), piGEM2018-Module003 digested by <i>BamH</i>Ⅰ+<i>Bgl</i>Ⅱ(lane 2).</div>
 +
 
 +
    </li>
 +
    <li>
 +
        <div class="bigtitle">
 +
            2. From straw to glucose
 +
        </div>
 +
        <div class="zhengwen">
 +
            <i>E. coli</i> BL21(DE3) carrying piGEM2018-Module001 was used to degrade straw to glucose. Three extracellular expressed enzymes ferulic acid esterase, xylanase and cellulase are involved in the pathway. The expression of the three target proteins were verified by enzyme activity using fermentation liquid and enzyme crude extract, respectively. The results showed that the activities of all three enzymes in fermentation liquid fraction are too low to be detected, which could be due to the fact of low enzyme concentration. We also determined the enzyme activity using enzyme crude extract. The enzyme activity in crude fraction obtained from the strain carrying piGEM2018-Module001 was higher than that without the corresponding vector for all enzymes.
 +
        </div>
 +
        <div class="chatu" style="padding:20px 5%;"><img src="https://static.igem.org/mediawiki/2018/b/b5/T--UESTC-China--dem3.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 2 Enzyme activity detection using crude extract fraction of strain with or without. Module001:All sample were collected after fermentation for 24 h.
 +
<br>(a) The activity of xylanase. U/mL definition: 1 ml of enzyme solution (at 40 °C pH = 6.0) 1 h decomposition of xylan to produce 1 mg xylose, regarded as an enzyme unit [1];
 +
<br>(b) The activity of ferulic acid esterase. U/mL definition: The amount of enzyme (at 40 °C pH = 6.4) required to degrade 1 μmol of 4-nitrophenyl trans-ferulate per minute is one Unit of ferulic acid esterase activity [2];
 +
<br>(c) The activity of total cellulase. U/mL definition: 1 ml of enzyme solution (at 40 °C pH = 7.0) hydrolyzed the filter paper per minute to produce 1.0 μmol of glucose, which is one Unit of total cellulase activity [3];
 +
<br>(d) The activity of endoglucanase. U/mL definition: 1 ml of enzyme solution (at 40 ° C pH = 7.0) hydrolyzed CMC-Na per minute to produce 1.0 μmol of glucose, which is one Unit of endoglucanase activity [4].</div>
 +
        <div class="zhengwen">
 +
            In order to further evaluate the extracellular expression of ferulic acid esterase, xylanase and cellulose, the formation of the corresponding intermediates were determined. GC-MS was used to detect ferulic acid. We shaked <i>E. coli</i> BL21(DE3) carrying piGEM2018-Module001 with corn stalk and the ferulic acid production was monitored by periodically taking samples from the fermentation liquid of <i>E. coli</i> BL21(DE3) carrying piGEM2018-Module001. Carvacrol was used as an internal standard for GC measurements [5]. GC results showed that the peak of ferulic acid was appeared after fermentation for 24h with the strain carrying piGEM2018-Module001, while no ferulic acid was detected in the sample of <i>E. coli</i> BL21(DE3) without vector (Fig. 3). The ferulic acid peak was further analyzed by using GC-MS (Fig. 4).
 +
        </div>
 +
        <div class="chatu" style="padding:20px 20%;"><img src="https://static.igem.org/mediawiki/2018/2/2f/T--UESTC-China--dem4.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 3 The production of ferulic acid determined using GC. The supernatants of fermented liquid of <i>E. coli</i> BL21(DE3) with or without  piGEM2018-Module001were used for the determination of ferulic acid, respectively. Samples were shaking with corn straw and taken from reaction mixtureat 0h, 24h.
 +
        </div>
 +
        <div class="chatu" style="padding:20px 20%;"><img src="https://static.igem.org/mediawiki/2018/a/af/T--UESTC-China--dem5.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 4  Mass spectrums of ferulic acid derivative. Sample was the supernatants of <i>E. coli</i> BL21(DE3) carrying piGEM2018-Module001 after fermentation for 24h.
 +
        </div>
 +
        <div class="zhengwen">
 +
            The activity of cellulase was determined by using Congo Red assay [6].  As shown in Fig. 5, the strains carrying piGEM2018-Module001 displayed a zone of clearance. Such a zone of clearance was also observed in the positive control carried out by using commercial cellulase, while no zone of clearance was observed with same <i>E. coli</i> strain carrying empty vector. The results indicated that cellulase was successfully extracellularly expressed in <i>E. coli</i> BL21(DE3) with piGEM2018-Module001.
 +
        </div>
 +
        <div class="chatu" style="padding:20px 10%;"><img src="https://static.igem.org/mediawiki/2018/c/c7/T--UESTC-China--dem6.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 5  Activity determination of cellulase using Congo Red assay. (a) CMC agar plate before staining with Congo Red. (b)CMC agar plate after staining with Congo Red. Module001: BL21(DE3) carrying piGEM2018-Module001(OD600: 1, 3, 5 from left to right); Positive Control: commercial cellulase (Enzyme concentration: 0.2, 0.3, 0.4 mg/ml from left to right); Negative Control: BL21 (DE3) carrying empty vector (OD600: 1, 3, 5 from left to right)
 +
        </div>
 +
 
 +
     </li>
 +
 
 +
    <li>
 +
        <div class="bigtitle">
 +
            3. Butanol production
 +
        </div>
 +
        <div class="zhengwen">
 +
            <i>E. coli</i> BL21(DE3) carrying piGEM2018-Module002 was used to convert  glucose to butanol. Five enzymes AtoB, Hbd, Crt, Ter and AdhE2 are involved in the pathway, which was validated by monitoring the production of butanol using GC. To test whether this multi-enzyme conversion system could work in our <i>E. coli</i> successfully or not, we detected the production curve of butanol.
 +
        </div>
 +
        <div class="zhengwen">
 +
            The butanol production was determined by periodically taking samples from the supernatant of fermented liquid of BL21(DE3). Isobutanol was used as an internal standard [7]. The results showed that the peak of butanol was appeared after fermentation for 24h with the strain carrying piGEM2018-Module002, while no butanol peak was observed for the negative control <i>E. coli</i> BL23(DE3) with empty vector(Fig. 6).
 +
        </div>
 +
        <div class="chatu" style="padding:20px 20%;"><img src="https://static.igem.org/mediawiki/2018/2/21/T--UESTC-China--dem7.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 6  The production of butanol determined using GC. The supernatants of fermented liquid of <i>E. coli</i> BL21(DE3) with or without piGEM2018-Module002 were used for the determination of butanol, respectively. For anaerobic growth, precultures were adjusted to OD600 10 with 2 mL of fresh medium with 50mg/mL kanamycin. The culture was transferred to a sealed 10ml vacuum tube. Cultures were shaken (200 rpm) at 37 °C for 24 h. Then samples were taken from reaction mixture at 0h, 24h.
 +
        </div>
 +
        <div class="zhengwen">
 +
            To improve butanol production, the fermentation conditions were optimized by using orthogonal array design by designing 17 three factor analysis. After a serious of butanol-production detection under different cultivating condition, we finally provided the necessary data for modeling. Then detecting the butanol production in 24h under the optimized conditions. (Fig. 7) And the final maximum yield of butanol is 0.406 g / L in 26 hours.
 +
        </div>
 +
        <div class="chatu" style="padding:20px 10%;"><img src="https://static.igem.org/mediawiki/2018/1/10/T--UESTC-China--butanolture.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 7  The butanol production curve at optimized conditions (temperature=34℃, initial OD=13, initial pH=8)
 +
        </div>
 +
       
 +
 
 +
 
 +
    </li>
 +
 
 +
    <li>
 +
        <div class="bigtitle">
 +
            4. Hydrogen production
 +
        </div>
 +
        <div class="zhengwen">
 +
            To verify whether the piGEM2018-Module003 plasmid was working normally in <i>E. coli</i> DH5α, we set up an anaerobic fermentation unit. The produced gases flow through the following setup to remove carbon dioxide as much as possible to get hydrogen.
 +
        </div>
 +
        <div class="chatu" style="padding:20px 10%;"><img src="https://static.igem.org/mediawiki/2018/b/ba/T--UESTC-China--9300.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 8 Overall setup of the hydrogen collection device.
 +
        </div>
 +
        <div class="zhengwen">
 +
            The collected gas is qualitatively detected by combustion test. As seen from Video 1, one can clearly hear the sound of boom, while no similar phenomenon was observed for the control group.
 +
        </div>
 +
        <div style="padding:20px 10%;">
 +
            <video controls="controls" width="100%">
 +
                <source src="https://static.igem.org/mediawiki/2018/8/80/T--UESTC-China--H2.mp4" type="video/mp4">
 +
                <!--<source src="myvideo.ogv" type="video/ogg"></source>-->
 +
                <!--<source src="myvideo.webm" type="video/webm"></source>-->
 +
                <!--<object width="" height="" type="application/x-shockwave-flash" data="myvideo.swf">
 +
                        <param name="movie" value="myvideo.swf" />
 +
                        <param name="flashvars" value="autostart=true&amp;file=myvideo.swf" />
 +
                    </object>-->
 +
                <object data="https://static.igem.org/mediawiki/2018/d/d9/T--UESTC-China--H2_%281%29.mp4" width="640" height="360">
 +
                    <embed src="https://static.igem.org/mediawiki/2018/d/d9/T--UESTC-China--H2_%281%29.mp4" width="640" height="360">
 +
                </object> 当前浏览器不支持 video直接播放,点击这里下载视频:
 +
                <a href="https://static.igem.org/mediawiki/2018/d/d9/T--UESTC-China--H2_%281%29.mp4">Download Video</a>
 +
            </video>
 +
        </div>
 +
        <div class="tu">
 +
            Video 1. The video of gas combustion test. Samples were collected from the engineered <i>E. coli</i> DH5α carrying the plasmid piGEM2018-Module003 and wild type plasmid after shaking 48h in TB medium.
 +
        </div>
 +
 
 +
        <div class="zhengwen">
 +
Next, we used gas collection devices to quantitatively detect hydrogen production. The recombinant strain and the original DH5α strain were fermented continuously for 36 hours in a 200 ml 1% (W/V) glucose M9 medium. Fig. 9 illustrates that our <i>E. coli</i> DH5α with piGEM2018-Module003 has higher hydrogen production than the original strain. At the same time, the hydrogen production of the recombinant bacteria increased exponentially with time (0-36h). Up to the end of fermentation, the yield of recombinant bacteria was 2.17mL/hr, which was 2.4 times higher than that of the original strain.
 +
        </div>
 +
        <div class="chatu" style="padding:20px 10%;"><img src="https://static.igem.org/mediawiki/2018/4/43/T--UESTC-China--dem10.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 9  A diagram of the volume of hydrogen generated over time in a gas collection device. Recombinant strain and original strain were fermented in 200 ml 1% (W/V) glucose M9 medium.
 +
        </div>
 +
        <div class="zhengwen">
 +
            Apart from the experiments, here we also carried out some theoretical modeling to provide some guidance to optimize the experimental condition. As demonstrated as following, 1 mol glucose can produce 2 mol hydrogen from the theoretical point of view [8]. In order to explore the optimal conditions for hydrogen production from <i>E. coli</i> DH5α with piGEM2018-Module003 more efficiently, we used vacuum vascularization (10mL) with 1mL 1% (w/v) glucose M9 medium and 100 microliters of recombinant bacteria growing to logarithmic metaphase to ferment under different conditions. Next, we measured the amount of hydrogen and formation rate following the 40hr anaerobic fermentation. The results showed that under the condition of 30°C, 1.13% (W/V), pH=6.8, our recombinant strain has the highest hydrogen production. Based on this, we compare our hydrogen production with relevant literatures. The results are as follows (Fig. 10).
 +
        </div>
 +
        <div class="chatu" style="padding:20px 10%;"><img src="https://static.igem.org/mediawiki/2018/e/e9/T--UESTC-China--dem--10.png" width="100%"></div>
 +
        <div class="tu">
 +
            Fig. 10 Comparing our hydrogen production with relevant literatures.
 +
        </div>
 +
        <div class="zhengwen">
 +
Fig. 10 shows that our <i>E. coli</i> DH5α with piGEM2018-Module003 hydrogen production is higher than most of the knockout and overexpression methods for <i>E. coli</i>'s own genes, but there is still a gap compared with the methods for cloning some heterologous genes into <i>E. coli</i>.
 +
        </div>
 +
 
 +
    </li>
 +
 
 +
 
 +
 
 +
    <li>
 +
        <div class="bigtitle">
 +
            5. Work going on
 +
        </div>
 +
 
 +
        <div class="smtitle">
 +
            Import suicide gene
 +
        </div>
 +
        <div class="zhengwen">
 +
The risks of our project are about the antibiotic resistance genes in case of the accident of incorrectly operation. However, it’s not uncontrollable. We plan to add a “suicide gene” leading the bacteria to express endolysin to kill themselves when they escape our cultivate medium.</div>       
 +
 
 +
        <div class="smtitle">
 +
            Import resistance gene
 +
        </div>
 +
        <div class="zhengwen">
 +
            GroESL, which is a combination of GroEL and GroES gene has been shown to increase butanol production in <i>E. coli</i> [12]. We have test the tolerance of <i>E. coli</i> BW25113 with GroESL gene and original BW25113 under the condition of 1% (v/V) butanol concentration. The result shows that GroESL has a positive effect on the butanol tolerance of <i>E. coli</i> (Fig. 11). In the future, we will use <i>E. coli</i> BW25113 combining piGEM2018-Module002 with GroESL gene to produce butanol. 
 +
        </div>
 +
        <div class="chatu" style="padding:20px 10%;"><img src="https://static.igem.org/mediawiki/2018/1/1c/T--UESTC-China--dem12.png" width="100%"></div>
 +
        <div class="tu">Fig. 11  After adding 0.3ml butanol in 30ml LB medium, the measurement of optical density (OD600) deference between DH5α with GroESL and Negative Control in 24 hour.</div>
 +
 
 +
 
 +
        <div class="smtitle">
 +
            Knock out relevant gene
 +
        </div>
 +
        <div class="zhengwen">
 +
            Due to limitations of experimental conditions, we are not able to knock out competitive pathway. However, many by-products will produce in the process of butanol production, namely frdABCD for succinate, ldhA for lactate, pta-ack for acetate, and adhE for ethanol (Fig. 12)[13]. If we could knock out these competitive pathway, then our butanol production will be greatly improved.
 +
        </div>
 +
        <div class="chatu" style="padding:20px 25%;"><img src="https://static.igem.org/mediawiki/2018/a/aa/T--UESTC-China--dem13.png" width="100%"></div>
 +
        <div class="tu">Fig. 12  <i>E. coli</i> self-metabolic pathway</div>
 +
 
 +
 
 +
    </li>
 +
    <li>
 +
        <div class="bigtitle">
 +
            7. References
 +
        </div>
 +
        <div class="zhengwen">
 +
            <div>[1]Shen C, Li R, Hu T & Yan K. 2011. Determination of xylanase activity with DNS method. Dyeing & Finishing, 2: 35-39.</div>
 +
            <div>[2]Zhang S, Pei X & Wu Z. 2009. Cloning and expression of feruloyl esterase A from Aspergillus niger, and establishment of fast activity detection methods. Chinese Journal of Applied & Environmental Biology, 2: 276-279.</div>
 +
            <div>[3]Luciano Silveira MH, Rau M, Pinto da Silva Bon E & Andreaus J. 2012. A simple and fast method for the determination of endo- and exo-cellulase activity in cellulase preparations using filter paper. Enzyme and Microbial Technology, 51: 280-285.
 
</div>
 
</div>
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;UESTC-China iGEM 2018 team gratefully acknowledges the following institutes:</div>
+
            <div>[4]Wood TM & Bhat KM. 1988. Methods for measuring cellulase activities. Methods in Enzymology, 160: 87-112.
<div class="zhengwen">
+
<ul>
+
    <li>School of Life Sciences, University of Electronic Science and Technology of China.</li>
+
    <li>Office of Educational Administration, University of Electronic Science and Technology of China.</li>
+
    <li>Office of Students' Affairs, University of Electronic Science and Technology of China.</li>
+
    <li>Plant Genome Engineering Lab, University of Electronic Science and Technology of China.</li>
+
    <li>Protein Engineering Lab, University of Electronic Science and Technology of China.</li>
+
    <li>College Of Life Sciences, Sichuan University.</li>
+
</ul>
+
 
</div>
 
</div>
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Experiment equipment support</div>
+
            <div>[5]Li Q, Gan G, Wang G & Liu Y. 2007. Determination of ferulic acid in ligusticum chuanxiong Hort.Oil by GC. Lishizhen Medicine & Materia Medica Research, 7: 1687-1688.
<div class="zhengwen">
+
<ul>
+
    <li>Thanks to School of Medicine (University of Electronic Science and Technology of China) for giving us support on Multifunctional enzyme marker.</li>
+
    <li>Thanks to School of Biotechnology (Jiangnan University) for presenting us the strain of Escherichia coli B0016-050</li>
+
</ul>
+
 
</div>
 
</div>
<div class="smtitle"><i class="fa fa-chevron-right"></i>&nbsp;Human practices support</div>
+
            <div>[6]Lakhundi SS. Synthetic biology approach to cellulose degradation[D]. Edinburgh: University of Edinburgh, 2012.
<div class="zhengwen">
+
    <ul>
+
        <li>Thanks to Biogas Institute of Ministry of Agriculture and Rural Affairs for giving us some suggestions in our project</li>
+
    </ul>
+
 
</div>
 
</div>
 +
            <div>[7]Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP & Liao JC. 2008. Metabolic engineering of E. coli for 1-butanol production. Metabolic Engineering, 10: 305-311.
 +
</div>
 +
            <div>[8]Hallenbeck PC & Ghosh D. 2012. Improvements in fermentative biological hydrogen production through metabolic engineering. Journal of Environmental Management, 95: 360-364.</div>
 +
            <div>[9]Yoshida A, Nishimura T, Kawaguchi H, Inui M & Yukawa H. 2006. Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Applied Microbiology and Biotechnology, 73: 67-72.</div>
 +
            <div>[10]Akhtar MK & Jones PR. 2009. Construction of a synthetic YdbK-dependent pyruvate:H2 pathway in Escherichia coli BL21(DE3). Metabolic Engineering, 11: 139-147.</div>
 +
            <div>[11]Chittibabu G, Nath K & Das D. 2006. Feasibility studies on the fermentative hydrogen production by recombinant escherichia coli, bl-21. Process Biochemistry, 41: 682-688.
 +
</div>
 +
            <div>[12]Abdelaal AS, Ageez AM, El AEHAA & Abdallah NA. 2015. Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum. 3 Biotech, 5: 401-410.</div>
 +
            <div>[13]Shen C & Liao J. 2008. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metabolic Engineering, 10: 312-320.</div>
  
  
            </div><!--以上为正文-->
 
 
         </div>
 
         </div>
 +
 +
    </li>
 +
</ul>
 +
</div>
 +
</div>
 +
<div style="clear: both;"></div>
 +
</div>
 +
</div>
 +
 +
  
  
    </div>
 
 
<div class="hehe" style="background-color:balck">
 
<div class="hehe" style="background-color:balck">
 
         <div class="container">
 
         <div class="container">
 
             <div class="row">
 
             <div class="row">
                 <div class="col-md-12 " style="text-alien: center; vertical-alien: middle; font-size: 127%; text-align: center;">Copyright © 2018 iGEM UESTC_China </div>
+
                 <div class="col-md-12 " style="text-alien: center; vertical-alien: middle; font-size: 127%; text-align: center;">Copyright © 2018 iGEM UESTC-China </div>
 
                 <div class="col-md-12" style="text-alien: center; vertical-alien: middle; font-size: 127%; text-align: center;">
 
                 <div class="col-md-12" style="text-alien: center; vertical-alien: middle; font-size: 127%; text-align: center;">
                     <div class="social-icons style="float:right; line-height:60px">
+
                     <div class="social-icons" style="font-size: 170%;">
 
                        
 
                        
                             <i><a href="#" class="fa fa-facebook"></a></i>&nbsp;
+
                             <i style="color: white;"><a href="https://www.facebook.com/uestcchinaigem" class="fa fa-facebook" style="color: white;"></a></i>&nbsp;
                             <i><a href="#" class="fa fa-twitter"></a></i>&nbsp;
+
                             <i><a href="https://twitter.com/UESTC_CHINA" class="fa fa-twitter" style="color: white;"></a></i>&nbsp;
                             <i><a href="#" class="fa fa-weibo"></a></i>&nbsp;
+
                             <i><a href="https://www.weibo.com/u/5983731394" class="fa fa-weibo" style="color: white;"></a></i>&nbsp;
                             <i><a href="#" class="fa fa-envelope"></a></i>
+
                              
 
                          
 
                          
 
                     </div>
 
                     </div>
Line 388: Line 471:
 
<script src="https://2018.igem.org/Template:UESTC-China/Javascript/bootjs?action=raw&amp;ctype=text/javascript"></script>
 
<script src="https://2018.igem.org/Template:UESTC-China/Javascript/bootjs?action=raw&amp;ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Template:UESTC-China/Javascript/bootnav?action=raw&amp;ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Template:UESTC-China/Javascript/bootnav?action=raw&amp;ctype=text/javascript"></script>
 +
 +
<script type="text/javascript">
 +
$(function(){
 +
//设置标杆
 +
var _line=parseInt($(window).height()/3);
 +
$(window).scroll(function(){
 +
 +
//滚动730px,左侧导航固定定位
 +
if ($(window).scrollTop()>350) {
 +
$('.fl_l').css({'opacity':'1'})
 +
}else{
 +
$('.fl_l').css({'opacity':'0'})
 +
};
 +
$('.fl_l li').eq(0).addClass('active');
 +
//滚动到标杆位置,左侧导航加active
 +
$('.fl_r li').each(function(){
 +
var _target=parseInt($(this).offset().top-$(window).scrollTop()-_line);
 +
var _i=$(this).index();
 +
if (_target<=0) {
 +
$('.fl_l li').removeClass('active');
 +
$('.fl_l li').eq(_i).addClass('active');
 +
}
 +
//如果到达页面底部,给左侧导航最后一个加active
 +
else if($(document).height()==$(window).scrollTop()+$(window).height()){
 +
$('.fl_l li').removeClass('active');
 +
$('.fl_l li').eq($('.fl_r li').length-1).addClass('active');
 +
}
 +
});
 +
});
 +
$('.fl_l li').click(function(){
 +
$(this).addClass('active').siblings().removeClass('active');
 +
var _i=$(this).index();
 +
$('body, html').animate({scrollTop:$('.fl_r li').eq(_i).offset().top-_line},500);
 +
});
 +
});
 +
</script>
 
<script type="text/javascript">
 
<script type="text/javascript">
 
$(function(){
 
$(function(){
Line 402: Line 521:
 
})
 
})
 
</script>
 
</script>
 +
 +
 +
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 03:25, 18 October 2018

team

  • 1. Pathway construction
    For efficient expression of multiple enzymes in E. coli, codon optimization of all target genes were performed before DNA synthesis. The obtained genes were subsequently cloned into different expression vectors by using Gibson Assembly and Golden Gate strategies. The resulting vectors piGEM2018-Module001, piGEM2018-Module002, and piGEM2018-Module003 are listed in Table 1.
    Table 1   Illustration of the three constructed vectors.
    No. Vector E. coli resistance Description
    1 piGEM2018-Module001 Amp BBa_J23100-RBS-pelB+5D-Xyn10D-Fae1A-RBS-pelB+5D-Xyl3A-RBS-pelB+5D-Cex-RBS-pelB+5D-CenA-Ter
    2 piGEM2018-Module002 Kan Ter-Ter-RBS-Fdh-RBS-FRE_adhE-FRE_ackA-RBS-AtoB-RBS-AdhE2-RBS-Crt-RBS-Hbd-Ter
    3 piGEM2018-Module003 Kan BBa_J23100-RBS-FhlA-RBS-HydA-Ter
    Before DNA sequencing, those vectors were verified by restriction enzyme digestion. After electrophoresis analysis, the samples which contained the desired bands were selected and sent for sequencing. The sequencing results showed that all the above constructed vectors were successful. (Fig. 1)
    Fig. 1 Double restriction enzyme digestion of three constructed vectors analyzed by using agarose gel electrophoresis.
    (a) piGEM2018-Module001 digested by Eco32Ⅰ+NcoⅠ(lane 1), piGEM2018-Module001 digested by NcoⅠ+XhoⅠ(lane 2);
    (b) piGEM2018-Module002 digested by PstⅠ+KpnⅠ(lane 1), piGEM2018-Module002 digested by HindⅢ+KpnⅠ(lane 2);
    (c) piGEM2018-Module003 digested by EcoRⅠ+NcoⅠ(lane 1), piGEM2018-Module003 digested by BamHⅠ+BglⅡ(lane 2).
  • 2. From straw to glucose
    E. coli BL21(DE3) carrying piGEM2018-Module001 was used to degrade straw to glucose. Three extracellular expressed enzymes ferulic acid esterase, xylanase and cellulase are involved in the pathway. The expression of the three target proteins were verified by enzyme activity using fermentation liquid and enzyme crude extract, respectively. The results showed that the activities of all three enzymes in fermentation liquid fraction are too low to be detected, which could be due to the fact of low enzyme concentration. We also determined the enzyme activity using enzyme crude extract. The enzyme activity in crude fraction obtained from the strain carrying piGEM2018-Module001 was higher than that without the corresponding vector for all enzymes.
    Fig. 2 Enzyme activity detection using crude extract fraction of strain with or without. Module001:All sample were collected after fermentation for 24 h.
    (a) The activity of xylanase. U/mL definition: 1 ml of enzyme solution (at 40 °C pH = 6.0) 1 h decomposition of xylan to produce 1 mg xylose, regarded as an enzyme unit [1];
    (b) The activity of ferulic acid esterase. U/mL definition: The amount of enzyme (at 40 °C pH = 6.4) required to degrade 1 μmol of 4-nitrophenyl trans-ferulate per minute is one Unit of ferulic acid esterase activity [2];
    (c) The activity of total cellulase. U/mL definition: 1 ml of enzyme solution (at 40 °C pH = 7.0) hydrolyzed the filter paper per minute to produce 1.0 μmol of glucose, which is one Unit of total cellulase activity [3];
    (d) The activity of endoglucanase. U/mL definition: 1 ml of enzyme solution (at 40 ° C pH = 7.0) hydrolyzed CMC-Na per minute to produce 1.0 μmol of glucose, which is one Unit of endoglucanase activity [4].
    In order to further evaluate the extracellular expression of ferulic acid esterase, xylanase and cellulose, the formation of the corresponding intermediates were determined. GC-MS was used to detect ferulic acid. We shaked E. coli BL21(DE3) carrying piGEM2018-Module001 with corn stalk and the ferulic acid production was monitored by periodically taking samples from the fermentation liquid of E. coli BL21(DE3) carrying piGEM2018-Module001. Carvacrol was used as an internal standard for GC measurements [5]. GC results showed that the peak of ferulic acid was appeared after fermentation for 24h with the strain carrying piGEM2018-Module001, while no ferulic acid was detected in the sample of E. coli BL21(DE3) without vector (Fig. 3). The ferulic acid peak was further analyzed by using GC-MS (Fig. 4).
    Fig. 3 The production of ferulic acid determined using GC. The supernatants of fermented liquid of E. coli BL21(DE3) with or without piGEM2018-Module001were used for the determination of ferulic acid, respectively. Samples were shaking with corn straw and taken from reaction mixtureat 0h, 24h.
    Fig. 4 Mass spectrums of ferulic acid derivative. Sample was the supernatants of E. coli BL21(DE3) carrying piGEM2018-Module001 after fermentation for 24h.
    The activity of cellulase was determined by using Congo Red assay [6]. As shown in Fig. 5, the strains carrying piGEM2018-Module001 displayed a zone of clearance. Such a zone of clearance was also observed in the positive control carried out by using commercial cellulase, while no zone of clearance was observed with same E. coli strain carrying empty vector. The results indicated that cellulase was successfully extracellularly expressed in E. coli BL21(DE3) with piGEM2018-Module001.
    Fig. 5 Activity determination of cellulase using Congo Red assay. (a) CMC agar plate before staining with Congo Red. (b)CMC agar plate after staining with Congo Red. Module001: BL21(DE3) carrying piGEM2018-Module001(OD600: 1, 3, 5 from left to right); Positive Control: commercial cellulase (Enzyme concentration: 0.2, 0.3, 0.4 mg/ml from left to right); Negative Control: BL21 (DE3) carrying empty vector (OD600: 1, 3, 5 from left to right)
  • 3. Butanol production
    E. coli BL21(DE3) carrying piGEM2018-Module002 was used to convert glucose to butanol. Five enzymes AtoB, Hbd, Crt, Ter and AdhE2 are involved in the pathway, which was validated by monitoring the production of butanol using GC. To test whether this multi-enzyme conversion system could work in our E. coli successfully or not, we detected the production curve of butanol.
    The butanol production was determined by periodically taking samples from the supernatant of fermented liquid of BL21(DE3). Isobutanol was used as an internal standard [7]. The results showed that the peak of butanol was appeared after fermentation for 24h with the strain carrying piGEM2018-Module002, while no butanol peak was observed for the negative control E. coli BL23(DE3) with empty vector(Fig. 6).
    Fig. 6 The production of butanol determined using GC. The supernatants of fermented liquid of E. coli BL21(DE3) with or without piGEM2018-Module002 were used for the determination of butanol, respectively. For anaerobic growth, precultures were adjusted to OD600 10 with 2 mL of fresh medium with 50mg/mL kanamycin. The culture was transferred to a sealed 10ml vacuum tube. Cultures were shaken (200 rpm) at 37 °C for 24 h. Then samples were taken from reaction mixture at 0h, 24h.
    To improve butanol production, the fermentation conditions were optimized by using orthogonal array design by designing 17 three factor analysis. After a serious of butanol-production detection under different cultivating condition, we finally provided the necessary data for modeling. Then detecting the butanol production in 24h under the optimized conditions. (Fig. 7) And the final maximum yield of butanol is 0.406 g / L in 26 hours.
    Fig. 7 The butanol production curve at optimized conditions (temperature=34℃, initial OD=13, initial pH=8)
  • 4. Hydrogen production
    To verify whether the piGEM2018-Module003 plasmid was working normally in E. coli DH5α, we set up an anaerobic fermentation unit. The produced gases flow through the following setup to remove carbon dioxide as much as possible to get hydrogen.
    Fig. 8 Overall setup of the hydrogen collection device.
    The collected gas is qualitatively detected by combustion test. As seen from Video 1, one can clearly hear the sound of boom, while no similar phenomenon was observed for the control group.
    Video 1. The video of gas combustion test. Samples were collected from the engineered E. coli DH5α carrying the plasmid piGEM2018-Module003 and wild type plasmid after shaking 48h in TB medium.
    Next, we used gas collection devices to quantitatively detect hydrogen production. The recombinant strain and the original DH5α strain were fermented continuously for 36 hours in a 200 ml 1% (W/V) glucose M9 medium. Fig. 9 illustrates that our E. coli DH5α with piGEM2018-Module003 has higher hydrogen production than the original strain. At the same time, the hydrogen production of the recombinant bacteria increased exponentially with time (0-36h). Up to the end of fermentation, the yield of recombinant bacteria was 2.17mL/hr, which was 2.4 times higher than that of the original strain.
    Fig. 9 A diagram of the volume of hydrogen generated over time in a gas collection device. Recombinant strain and original strain were fermented in 200 ml 1% (W/V) glucose M9 medium.
    Apart from the experiments, here we also carried out some theoretical modeling to provide some guidance to optimize the experimental condition. As demonstrated as following, 1 mol glucose can produce 2 mol hydrogen from the theoretical point of view [8]. In order to explore the optimal conditions for hydrogen production from E. coli DH5α with piGEM2018-Module003 more efficiently, we used vacuum vascularization (10mL) with 1mL 1% (w/v) glucose M9 medium and 100 microliters of recombinant bacteria growing to logarithmic metaphase to ferment under different conditions. Next, we measured the amount of hydrogen and formation rate following the 40hr anaerobic fermentation. The results showed that under the condition of 30°C, 1.13% (W/V), pH=6.8, our recombinant strain has the highest hydrogen production. Based on this, we compare our hydrogen production with relevant literatures. The results are as follows (Fig. 10).
    Fig. 10 Comparing our hydrogen production with relevant literatures.
    Fig. 10 shows that our E. coli DH5α with piGEM2018-Module003 hydrogen production is higher than most of the knockout and overexpression methods for E. coli's own genes, but there is still a gap compared with the methods for cloning some heterologous genes into E. coli.
  • 5. Work going on
    Import suicide gene
    The risks of our project are about the antibiotic resistance genes in case of the accident of incorrectly operation. However, it’s not uncontrollable. We plan to add a “suicide gene” leading the bacteria to express endolysin to kill themselves when they escape our cultivate medium.
    Import resistance gene
    GroESL, which is a combination of GroEL and GroES gene has been shown to increase butanol production in E. coli [12]. We have test the tolerance of E. coli BW25113 with GroESL gene and original BW25113 under the condition of 1% (v/V) butanol concentration. The result shows that GroESL has a positive effect on the butanol tolerance of E. coli (Fig. 11). In the future, we will use E. coli BW25113 combining piGEM2018-Module002 with GroESL gene to produce butanol.
    Fig. 11 After adding 0.3ml butanol in 30ml LB medium, the measurement of optical density (OD600) deference between DH5α with GroESL and Negative Control in 24 hour.
    Knock out relevant gene
    Due to limitations of experimental conditions, we are not able to knock out competitive pathway. However, many by-products will produce in the process of butanol production, namely frdABCD for succinate, ldhA for lactate, pta-ack for acetate, and adhE for ethanol (Fig. 12)[13]. If we could knock out these competitive pathway, then our butanol production will be greatly improved.
    Fig. 12 E. coli self-metabolic pathway
  • 7. References
    [1]Shen C, Li R, Hu T & Yan K. 2011. Determination of xylanase activity with DNS method. Dyeing & Finishing, 2: 35-39.
    [2]Zhang S, Pei X & Wu Z. 2009. Cloning and expression of feruloyl esterase A from Aspergillus niger, and establishment of fast activity detection methods. Chinese Journal of Applied & Environmental Biology, 2: 276-279.
    [3]Luciano Silveira MH, Rau M, Pinto da Silva Bon E & Andreaus J. 2012. A simple and fast method for the determination of endo- and exo-cellulase activity in cellulase preparations using filter paper. Enzyme and Microbial Technology, 51: 280-285.
    [4]Wood TM & Bhat KM. 1988. Methods for measuring cellulase activities. Methods in Enzymology, 160: 87-112.
    [5]Li Q, Gan G, Wang G & Liu Y. 2007. Determination of ferulic acid in ligusticum chuanxiong Hort.Oil by GC. Lishizhen Medicine & Materia Medica Research, 7: 1687-1688.
    [6]Lakhundi SS. Synthetic biology approach to cellulose degradation[D]. Edinburgh: University of Edinburgh, 2012.
    [7]Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP & Liao JC. 2008. Metabolic engineering of E. coli for 1-butanol production. Metabolic Engineering, 10: 305-311.
    [8]Hallenbeck PC & Ghosh D. 2012. Improvements in fermentative biological hydrogen production through metabolic engineering. Journal of Environmental Management, 95: 360-364.
    [9]Yoshida A, Nishimura T, Kawaguchi H, Inui M & Yukawa H. 2006. Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Applied Microbiology and Biotechnology, 73: 67-72.
    [10]Akhtar MK & Jones PR. 2009. Construction of a synthetic YdbK-dependent pyruvate:H2 pathway in Escherichia coli BL21(DE3). Metabolic Engineering, 11: 139-147.
    [11]Chittibabu G, Nath K & Das D. 2006. Feasibility studies on the fermentative hydrogen production by recombinant escherichia coli, bl-21. Process Biochemistry, 41: 682-688.
    [12]Abdelaal AS, Ageez AM, El AEHAA & Abdallah NA. 2015. Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum. 3 Biotech, 5: 401-410.
    [13]Shen C & Liao J. 2008. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metabolic Engineering, 10: 312-320.
Copyright © 2018 iGEM UESTC-China