Difference between revisions of "Team:Ecuador/Background"

 
Line 1: Line 1:
 
{{Ecuador}}
 
{{Ecuador}}
 
<html>
 
<html>
 +
 +
<head>
 +
<meta charset="utf-8">
 +
<title>C-lastin, Interlab</title>
 
<style>
 
<style>
 +
@charset "utf-8";
 +
/* CSS Document */
 +
.ec--modeling--container{
 +
padding-top: 100px;
 +
padding-right: 14%;
 +
padding-bottom: 100px;
 +
padding-left: 38%;
 +
}
 +
.ec--main--title{
 +
text-align: center;
 +
padding-top: 30px;
 +
padding-right: 30px;
 +
padding-bottom: 30px;
 +
padding-left: 30px;
 +
}
 +
.ec--img--wwd--cont{
 +
text-align: center;
 +
padding-top: 20px;
 +
padding-right: 20px;
 +
padding-bottom: 20px;
 +
padding-left: 20px;
 +
}
 +
.ec--modeling--items{
 +
width: 270px;
 +
display: block;
 +
position: fixed;
 +
float: left;
 +
top: 250px; /*position: -webkit-sticky;
 +
position: sticky;
 +
padding-bottom: 0px;
 +
margin-top: 11.4em;*/
 +
left: 14%;
 +
line-height: 1.3;
 +
text-indent: inherit;
 +
}
 +
ul.circle {
 +
    list-style-type: circle;
 +
}
 +
.ec--biob--cont{
 +
padding-top: 20px;
 +
padding-right: 20px;
 +
padding-bottom: 20px;
 +
padding-left: 20px;
 +
}
 +
.textdis{
 +
    display:none;
 +
}
 +
.loc-neg-c{
 +
display: none;
 +
}
 +
.loc-pos-c{
 +
display: none;
 +
}
 +
.loc-td1{
 +
display: none;
 +
}
 +
.loc-td2{
 +
display: none;
 +
}
 +
.loc-td3{
 +
display: none;
 +
}
 +
.loc-td4{
 +
display: none;
 +
}
 +
.loc-td5{
 +
display: none;
 +
}
 +
.loc-td6{
 +
display: none;
 +
}
  
@import url('https://fonts.googleapis.com/css?family=Raleway');
+
input:hover  {
  *{
+
     background-color: brown;
      margin: 0px;
+
}
      font-family: 'Raleway', sans-serif;
+
  }
+
     @keyframes slide-in {
+
      from {
+
        margin-left: -100%;
+
        border-bottom-right-radius: 30px;
+
        border-top-right-radius: 30px;
+
      }
+
  
      to {
+
#bigBox {
        margin-left: 0%;
+
  width:800px;
        border-bottom-right-radius: 0;
+
  height: 300px;
        border-top-right-radius: 0px;
+
}
      }
+
#leftBox {
    }
+
float: left;
 +
height: 300px;
 +
width: 390px;
 +
margin: 0;
 +
}
 +
#rightBox {
 +
  float:right;
 +
  height:300px;
 +
  width: 390px;
 +
}
 +
.ec--biobr--location--container{
 +
padding-top: 50px;
 +
padding-right: 25px;
 +
padding-bottom: 25px;
 +
padding-left: 25px;
 +
}
 +
.ec--h2{
 +
font-size: 25px;
 +
font-weight: bolder;
 +
display: block;
 +
margin-top: 15px;
 +
margin-bottom: 15px;
 +
clear: both;
 +
padding-top: 20px;
 +
padding-bottom: 20px;
 +
color: black;
 +
line-height: 40px;
 +
}
 +
.ec--p{
 +
display: block;
 +
line-height: 2;
 +
text-align: justify;
 +
font-size: 16px;
 +
}
 +
.ec--coll--video{
 +
display: block;
 +
clear: both;
 +
text-align: center;
 +
padding-top: 30px;
 +
padding-bottom: 30px;
 +
}
 +
.ec--coll--letter{
 +
text-align: justify;
 +
display: block;
 +
margin-left: 20px;
 +
margin-right: 20px;
 +
margin-top: 20px;
 +
margin-bottom: 20px;
 +
width: 900px;
 +
}
 +
.ec--img--surv{
 +
top: 0;
 +
bottom: 0;
 +
left: 0;
 +
right: 0;
 +
margin: auto;
 +
padding-top: 20px;
 +
padding-bottom: 20px;
 +
}
 +
.anchorOffset{
  
    @keyframes slide-in-menu {
+
display: block !important;
      from {
+
position: relative !important;
        margin-left: -120%;
+
top: -135px !important;
        border-bottom-right-radius: 30px;
+
visibility: hidden !important;
        border-top-right-radius: 30px;
+
        opacity: 0.5;
+
      }
+
  
      to {
+
}
        margin-left: 0%;
+
a.lateral{
        border-bottom-right-radius: 0;
+
  color: black;
        border-top-right-radius: 0px;
+
  text-decoration: inherit;
        opacity: 1;
+
  opacity: 1;
      }
+
  color: gray;
    }
+
  font-weight: 500;
 +
  font-size: 16px;
 +
}
 +
a.inner-link--active {
 +
  opacity: 1;
 +
  animation: bulge .5s ease;
 +
  -webkit-animation: bulge .5s ease;
 +
}
 +
.ec--h3{
 +
font-size: 22px;
 +
font-weight: bolder;
 +
display: block;
 +
margin-top: 15px;
 +
margin-bottom: 15px;
 +
clear: both;
 +
padding-top: 20px;
 +
 +
}
  
    @keyframes fade-in {
 
      from {
 
        opacity: 0;
 
      }
 
  
      to {
+
</style>
        opacity: 1;
+
      }
+
</head>
    }
+
    @keyframes slide-in-oposite {
+
      from {
+
        margin-left: 100%;
+
      }
+
  
      to {
+
<body>
        margin-left: 0%;
+
<div class="ec--modeling--container">
      }
+
<div class="ec--first--section">
    }
+
<div class="ec--main--title">
 +
<a name="l1"  style="text-decoration: none;"></a>
 +
<h1>
 +
BACKGROUND
 +
</h1>
 +
</div>
 +
<div class="ec--modeling--items">
 +
<h3><a href="#l1" style="color:black; text-decoration: none">Index</a></h3>
 +
<ul class="circle">
 +
<li><a href="#l2" style="color:black; text-decoration: none">Phase 1</a></li>
 +
                <ul>
 +
                  <li><a href="#l3" style="color:black; text-decoration: none">Bacterial Cellulose</a></li>
 +
                </ul>
 +
<li><a href="#l4" style="color:black; text-decoration: none">Phase 2</a></li>
 +
<ul>
 +
                  <li><a href="#l5" style="color:black; text-decoration: none">Lastin-like polypeptides</a></li>
 +
<li><a href="#l6" style="color:black; text-decoration: none">Super folder green fluorescent protein</a></li>
 +
<li><a href="#l7" style="color:black; text-decoration: none">Bone morphogenetic protein II</a></li>
 +
<li><a href="#l8" style="color:black; text-decoration: none">Cellulose-binding domains</a></li>
 +
                </ul>
 +
                <li><a href="#l9" style="color:black; text-decoration: none">References</a></li>
 +
               
 +
</ul>
 +
</div>
 +
 +
</div>
 +
 +
<div class="ec--nau--content">
 +
 +
<div class=WordSection1>
  
    @keyframes slide-in-oposite-chooser {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=5
      from {
+
face=Arial><span lang=EN-US style='font-size:16.0pt;line-height:150%;
        right: -50px;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l2"  style="text-decoration: none;"></a>PHASE 1</span></font></b></p>
      }
+
  
      to {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=4
        right: 50px;
+
face=Arial><span lang=EN-US style='font-size:14.0pt;line-height:150%;
      }
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l3"  style="text-decoration: none;"></a>BACTERIAL CELLULOSE</span></font></b></p>
    }
+
  
    @keyframes slide-in-up {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      from {
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
        margin-top: 100%;
+
font-family:"Arial",sans-serif'>Cellulose was the most common biopolymer in the
      }
+
world. </span></font><font size=3 face=Arial><span lang=EN style='font-size:
 +
12.0pt;line-height:150%;font-family:"Arial",sans-serif'>The primary form in
 +
which the material is found is lignocellulotic in trees, however there are
 +
other sources such as bacterial cellulose </span></font><sup><font size=3
 +
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>[1]</span></font></sup><font size=3 face=Arial><span
 +
lang=EN-US style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>.</span></font><font
 +
size=3 face=Arial><span lang=EN style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>This was first described by Luis Pasteur in the
 +
previous century and reported for the first time its use in a Philippine
 +
dessert called coconut cream, however, it was not until 1886 when it was
 +
reported as a type of cellulose in an acetic fermentation, after being observed
 +
as a floating film in a culture medium</span></font><sup><font size=3
 +
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>[2]</span></font></sup><font size=3 face=Arial><span
 +
lang=EN style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>.
 +
In recent years, several studies have been carried out on the usefulness of
 +
bacterial cellulose due to its high degree of purity and its simpler structure
 +
than that obtained from plants, in addition to the speed of polymer formation,
 +
reducing costs and environmental impact in the  purification process to
 +
eliminate the lignin and other impurities of the material to be applied in the
 +
industries</span></font><sup><font size=3 face=Arial><span lang=EN-US
 +
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>[3]</span></font></sup><font
 +
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>.</span></font></p>
  
      to {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
        margin-left: 0%;
+
face=Arial><span lang=EN style='font-size:12.0pt;line-height:150%;font-family:
      }
+
"Arial",sans-serif'>Bacterial cellulose has been used mainly in the paper
    }
+
industry, in the food for the realization of various desserts and strong dishes
 +
and as a material for garment development, due to its great flexibility, it is
 +
also impregnated with several nanoparticles to give antimicrobial, antifungal
 +
capacities</span></font><sup><font size=3 face=Arial><span lang=EN-US
 +
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>[4]</span></font></sup><font
 +
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>.</span></font><font size=3 face=Arial><span
 +
lang=EN style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>
 +
Its ability to be combined with other proteins gives it the advantage to create
 +
new polymers with other desired properties such as bioplastics and drug
 +
administrators when combined with therapeutic proteins</span></font><sup><font
 +
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>[5]</span></font></sup><font size=3 face=Arial><span
 +
lang=EN-US style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>.</span></font><font
 +
size=3 face=Arial><span lang=EN style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'> The existing biocompatibility between bacterial
 +
cellulose and human cells has led to the use of the polymer as a matrix for the
 +
regeneration of organs and tissues such as cartilage and skin</span></font><sup><font
 +
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>[6]</span></font></sup><font size=3 face=Arial><span
 +
lang=EN-US style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>.</span></font></p>
  
    @keyframes slide-in-up-oposite {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=5
      from {
+
face=Arial><span lang=EN-US style='font-size:16.0pt;line-height:150%;
        margin-top: -100%;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l4"  style="text-decoration: none;"></a>PHASE 2 FUSION PROTEIN
      }
+
CBD-ELP-BMP2</span></font></b></p>
  
      to {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=4
        margin-left: 0%;
+
face=Arial><span lang=EN-US style='font-size:14.0pt;line-height:150%;
      }
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l5"  style="text-decoration: none;"></a>LASTIN-LIKE POLYPEPTIDES</span></font></b></p>
    }
+
  
   
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
 +
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>Elastin-like polypeptides (ELP) are genetically
 +
encodable artificial biopolymers. They are elastomeric proteins formed by a
 +
repetitive pentapeptide of Val-Pro-Gly-Xaa-Gly sequence, Xaa can be any amino
 +
acid except proline. <sup>[1]</sup>. </span></font></p>
  
    .ecuador_href_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 14.28% !important;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 100% !important;
+
font-family:"Arial",sans-serif'>ELPs are thermostable biopolymers whose
      position: relative !important;
+
properties vary depending on the temperature, pH or ionic strength. They can
      justify-content: center !important;
+
pass from a soluble state to an insoluble one and reversibly depending on their
      align-items: center !important;
+
transition temperature (Tt) <sup>[2]</sup>, at temperatures lower than the Tt
      display: flex !important;
+
ELPs are soluble, but insoluble when the temperature exceeds the Tt. This
      color: #FFFFFF !important;
+
property is maintained even when they are fused with other proteins and has
      transition: 0.2s !important;
+
been used in protein purification. The amino acid residues that contain groups
      text-align: center !important;
+
susceptible to ionization result in a polymer with a Tt regulated by changes in
      text-decoration: none !important;
+
pH, in addition, the substitution of the Xaa residue allows ELP to be designed
    }
+
with a desired Tt<sup>[3]</sup>.  </span></font></p>
  
    .ecuador_href_sub_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100% !important;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 40px !important;
+
font-family:"Arial",sans-serif'>In biomedicine, ELPs have applications in the
      position: relative !important;
+
specific drug delivery, in tissue engineering and regenerative medicine. It has
      text-align: left !important;
+
been possible to selectively transport antineoplastic drugs to pathologically
      text-indent: 20px !important;
+
changed tissues, allowing the polymer-drug conjugates to accumulate in the
      display: flex !important;
+
vicinity of a tumour, showing a lower toxicity compared to free-running drugs. <sup>[1]</sup>.
      background-color: #000 !important;
+
</span></font></p>
      margin: auto auto !important;
+
      align-items: center !important;
+
      transition: 0.2s !important;
+
      color: #D5DBDB !important;
+
      text-decoration: none !important;
+
    }
+
  
    .menu_option:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      margin-top: 3px;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      cursor: pointer;
+
font-family:"Arial",sans-serif'>In regenerative medicine, ELPs have been used
    }
+
as scaffolds in tissue regeneration, and have shown promising results in
 +
treatments for articular cartilage damage, where a hydrogel made of ELP is
 +
used, in which it effectively contributed to the production of a cartilage
 +
matrix. Other studies show that ELPs conjugated with polymers such as
 +
polyacrylic acid and polyethyleneimine can strongly influence the aggregation,
 +
morphology and differentiated function of hepatocytes in vitro, showing the
 +
ability to use ELP in the regeneration of liver tissue <sup>[1]</sup>. In
 +
addition, ELPs have shown promising results to be used in the engineering of
 +
ocular surface tissues, and in vascular grafts <sup>[4]</sup>.</span></font></p>
  
    .menu_option:hover div.menu_sub_options_container{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=4
      display: block;
+
face=Arial><span lang=EN-US style='font-size:14.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l6"  style="text-decoration: none;"></a>SUPER FOLDER GREEN FLUORESCENT
 +
PROTEIN</span></font></b></p>
  
    .menu_sub_options_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><img width=287
      width: 90%;
+
height=238 src="https://static.igem.org/mediawiki/2018/2/2d/T--Ecuador--bg--001.png" align=left hspace=15
      height: auto;
+
alt="Proteina verde &#13;&#10;  &#13;&#10;"><font size=3 face=Arial><span
      position: absolute;
+
lang=ES-EC style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'> </span></font><font
      top: 50px;
+
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      display: none;
+
font-family:"Arial",sans-serif'>More complete variants of GFP are used as
    }
+
fusion markers and protein expression reporters, but fused proteins can reduce
 +
the yield, yield, and fluorescence of these GFPs.<sup>[1] </sup>They perform
 +
the process properly, when expressed alone or when it is fused to well-folded
 +
proteins; In addition, the resistance of GFP is dependent on the chemistry and
 +
thermal denaturation. In this project we will use a GFP super-folder, which is
 +
a variation of the green fluorescent protein (GFP). Frequently, wild-type GFP
 +
is misfolded when expressed in E. coli and when expressed as fusions with other
 +
proteins. Unlike this one, the GFP super-folder contains 'cycle-3' mutations
 +
and the 'enhanced GFP' mutations F64L and S65T<sup>[2]</sup>, giving it a
 +
better tolerance to circular permutation, greater resistance to chemical
 +
denaturing<sup>[3]</sup> and better folding kinetics. Therefore, it can be
 +
folded correctly even though the fused protein is not well folded. In 2006 it
 +
was evidenced through X-ray crystallographic structural analysis, the presence
 +
of a network of five-member ion pairs in the GFP superfolder, based on its S30R
 +
mutation; and thus improving its folding compared to the GFP reporter.</span></font></p>
  
    .sub_menu_option {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 40px;
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
      position: relative;
+
      text-align: left;
+
      text-indent: 20px;
+
      display: flex;
+
      background-color: #000;
+
      margin: auto auto;
+
      align-items: center;
+
      transition: 0.2s;
+
      color: #D5DBDB;
+
    }
+
  
    .sub_menu_option:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><img width=248
      text-indent: 25px;
+
height=201 src="https://static.igem.org/mediawiki/2018/6/64/T--Ecuador--bg--002.png" align=right hspace=15
      background-color: #2E86C1;
+
alt="Proteina cafe &#13;&#10;  &#13;&#10;"><b><font size=4 face=Arial><span
    }
+
lang=EN-US style='font-size:14.0pt;line-height:150%;font-family:"Arial",sans-serif;
 +
font-weight:bold'><a name="l7"  style="text-decoration: none;"></a>BONE MORPHOGENETIC PROTEIN II</span></font></b></p>
  
 +
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
 +
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>The discovery of BMPs by Urist in 1965 has been
 +
a breakthrough in research that has been shown that the protein is able to
 +
stimulate bone production. Due to these properties, this protein is currently
 +
used in various fields such as Traumatology, Tissue Engineering and orthopedic
 +
surgery in which recombinant human BMP2 (rhBMP2) is used. The implantation of
 +
BMP2 in a collagen sponge induces the formation of new bone and can be used as
 +
a treatment for certain bone defects<sup>[4]</sup>. </span></font></p>
  
    /*Background*/
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
 +
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>Oral surgery has benefited in particular with
 +
the commercialization of this protein, since the use of BMP2 in absorbable
 +
collagen sponges has significantly reduced the costs of the interventions and
 +
the pain suffered by patients with degenerative disease of the lumbar
 +
discotheques.</span></font></p>
  
    .ecuador_background_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=5
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:16.0pt;line-height:150%;
      height: 600px;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l8"></a>CELLULOSE-BINDING DOMAINS</span></font></b></p>
      position: absolute;
+
      left: 0px;
+
      top: 110px;
+
      background-color: #F8F9F9;
+
      display: block;
+
    }
+
  
    .ecuador_background_title_cotainer {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 70px;
+
font-family:"Arial",sans-serif'>Cellulose, the most abundant biopolymer and
      position: absolute;
+
biorenewable compound Earth, is a recalcitrant polysaccharide<sup>[1]</sup>.
      color: #141515;
+
Cellulolytic organisms are capable of degrading cellulose which involves
      font-size: 70px;
+
excretion of endo- and exo-glucanases as well as glucosidases. Structurally,
      font-weight: 500;
+
these enzymes are modular, consisting of a catalytic domain and
      display: flex;
+
cellulose-binding domain (CBD), as well as possible ancillary domains<sup>[2]</sup>.  
      justify-content: center;
+
Because of the modules play generally their respective role independently, the
      align-items: center;
+
CBD has been studied to improve the cellulose degradation as well as to bind
      animation-name: fade-in;
+
other functional proteins. It has been foun that CBD can be found at the
      animation-duration: 1.5s;
+
N-terminal or at the C-terminal region of these enzymes<sup>[4]</sup>.</span></font></p>
      animation-fill-mode: backwards;
+
      animation-delay: 0.5s;
+
      display: none;
+
      top: 40px;
+
    }
+
  
    .ecuador_background_team_main_cotainer {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: auto;
+
font-family:"Arial",sans-serif'>In order to evaluate an N-terminal and a
      position: relative;
+
C-terminal CBD we chose the domain of <i><span style='font-style:italic'>Clostridium</span></i>
      top: 60px;
+
<i><span style='font-style:italic'>thermocellum</span></i>
      display: flex;
+
cellulosome-scaffolding protein A (cipA) and the domain of <i><span
      transition: 2s;
+
style='font-style:italic'>Cellulomonas fimi</span></i> exoglucanase (Cex). We
    }
+
used the CBDcipA because the high affinity among other CBDs reported by the
 +
Imperail College London team (2014).</span></font></p>
  
    .ecuador_background_team_logo {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 55%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      position: relative;
+
font-family:"Arial",sans-serif'>The modules are joined by linkers that are
      height: 300px;
+
variable in terms of length and amino acid composition. The length ranges from
      background-image: url(https://static.igem.org/mediawiki/2018/b/bf/T--Ecuador--Clastin--logo.png);
+
a few to up to 150 amino acids whereas the sequences are rich in proline or/and
      background-position: center;
+
hydroxyamino acids<sup>[3]</sup>. Because of the synergistic activity between
      background-size: 100%;
+
the catalytic and cellulose-binding domain is dependent of the length and/or
      background-repeat: no-repeat;
+
linker sequence, we have used their respective endogenous linkers<sup>[2]</sup>.  
      margin-left: 3%;
+
</span></font></p>
      margin-top: -1%;
+
      animation-name: fade-in;
+
      animation-duration: 2.5s;
+
      animation-fill-mode: backwards;
+
      animation-delay: 1.25s;
+
    }
+
  
    #igem{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      animation-name: fade-in;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      animation-duration: 0.75s;
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
      animation-fill-mode: backwards;
+
      animation-delay: 0.5s;
+
      transition: 0.5s;
+
    }
+
  
    #team{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=5
      animation-name: fade-in;
+
face=Arial><span lang=EN-US style='font-size:16.0pt;line-height:150%;
      animation-delay: 0.75s;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l9"></a>References</span></font></b></p>
      animation-duration: 0.5s;
+
      animation-fill-mode: backwards;
+
      transition: 0.5s;
+
    }
+
  
    #ecuador {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      animation-name: fade-in;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      animation-delay: 1s;
+
font-family:"Arial",sans-serif'>Ummatyotin, S., &amp; Manuspiya, H. (2014). A
      animation-duration: 0.5s;
+
critical review on cellulose: From fundamental to an approach on sensor
      animation-fill-mode: backwards;
+
technology . </span></font><i><font size=3 face=Arial><span style='font-size:
      transition: 0.5s;
+
12.0pt;line-height:150%;font-family:"Arial",sans-serif;font-style:italic'>Renewable
    }
+
and Sustainable Energy Reviews</span></font></i><font size=3 face=Arial><span
 +
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>,
 +
402-409.</span></font></p>
  
    .ecuador_background_team_text_cotainer {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 37%;
+
face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>Iguchi,
      height: auto;
+
M., Yamanaka, S., &amp; Budhiono, A. (2000). </span></font><font size=3
      position: relative;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      transition: 0.5s;
+
font-family:"Arial",sans-serif'>Review bacterial cellulose-a masterpiece of
    }
+
nature's art . </span></font><i><font size=3 face=Arial><span style='font-size:
 +
12.0pt;line-height:150%;font-family:"Arial",sans-serif;font-style:italic'>Journal
 +
of material science</span></font></i><font size=3 face=Arial><span
 +
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>,
 +
261-270.</span></font></p>
  
    .ecuador_background_team_title_text_cotainer {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      text-indent: 10%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 100px;
+
font-family:"Arial",sans-serif'>Foresti, L., Vazquez, A., &amp; Boury, B.
      font-size: 800%;
+
(2016). Appiation of bacterial cellulose as precusor of carbon and composites
      text-align: justify;
+
with metal oxide, metal sulfide and metal nanoparticles. </span></font><i><font
      text-align: right;
+
size=3 face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:
      color: #333333;
+
"Arial",sans-serif;font-style:italic'>Carbohydrate polymers</span></font></i><font
    }
+
size=3 face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:
 +
"Arial",sans-serif'>.</span></font></p>
  
    .take_a_look_button_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 60px;
+
font-family:"Arial",sans-serif'>MAneerung, T., Tokura, S., Rujiracanit, &amp;
      position: relative;
+
R. (2007). Impregnation of silver nanoparticles into bacterial cellulose for
      margin-top: 90px;
+
antimicrobial wound dressing. </span></font><i><font size=3 face=Arial><span
    }
+
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif;
 +
font-style:italic'>Carbohydrate polymers</span></font></i><font size=3
 +
face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>,
 +
43-51.</span></font></p>
  
    .take_a_look_button {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 15%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 60px;
+
font-family:"Arial",sans-serif'>Helenius, C., Backhdal, H., Bodin, A.,
      position: relative;
+
Nannmark, U., Gatenholm, P., Risberg, &amp; B. (2005). </span></font><font
      background-color: #333333;
+
size=3 face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:
      margin: auto;
+
"Arial",sans-serif'>In vivo biocompatibility of bacterial cellulose. <i><span
      color: #FFF;
+
style='font-style:italic'>Wiley InterScience</span></i>, 431-438.</span></font></p>
      text-align: center;
+
      align-items: center;
+
      justify-content: center;
+
      display: flex;
+
      font-size: 140%;
+
      transition: 0.4s;
+
      animation-name: fade-in;
+
      animation-duration: 1.5s;
+
      animation-fill-mode: backwards;
+
      animation-delay: 1.5s;
+
    }
+
  
    .take_a_look_button:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      -webkit-box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      -moz-box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
+
font-family:"Arial",sans-serif'>Backdahl, H., Helenius, G., Bodin, A.,
      box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
+
Naanmmark, U., Johansson, R., Risberg, B., &amp; Gatenholm, P. (2006).
      cursor: pointer;
+
Mechanical properties of bacterial cellulose and interactions with smooth
    }
+
muscle cells. </span></font><i><font size=3 face=Arial><span style='font-size:
 +
12.0pt;line-height:150%;font-family:"Arial",sans-serif;font-style:italic'>Biomaterials</span></font></i><font
 +
size=3 face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:
 +
"Arial",sans-serif'>, 2141-2149.</span></font></p>
  
    .ecuador_background_logo {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: auto;
+
font-family:"Arial",sans-serif;background:white'>KOWALCZYK, Tomasz, et al.
      display: block;
+
Elastin-like polypeptides as a promising family of genetically-engineered
      justify-content: center;
+
protein based polymers.&nbsp;<i><span style='font-style:italic'>World Journal
      padding-top: 2%;
+
of Microbiology and Biotechnology</span></i>, 2014, vol. 30, no 8, p.
    }
+
2141-2152.</span></font></p>
  
    .ecuador_background_logo_container{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 450px;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 450px;
+
font-family:"Arial",sans-serif;background:white'>PARK, Ji-Eun; WON, Jong-In.
      position: relative;
+
Thermal behaviors of elastin-like polypeptides (ELPs) according to their
      animation-name: fade-in;
+
physical properties and environmental conditions.&nbsp;<i><span
      animation-duration: 3s;
+
style='font-style:italic'>Biotechnology and Bioprocess Engineering</span></i>,
      margin: auto;
+
2009, vol. 14, no 5, p. 662.</span></font></p>
      background-image: url(https://static.igem.org/mediawiki/2018/9/94/T--Ecuador--Background--Logo.png);
+
      background-position: center;
+
      background-size: 90%;
+
      background-repeat: no-repeat;
+
      transition: 0.5s;
+
      margin-top: -20px;
+
      display: none;
+
    }
+
  
    .ecuador_background_logo_container:hover{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-size: 99%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      cursor: pointer;
+
font-family:"Arial",sans-serif;background:white'>MCMILLAN, R. Andrew;
      transition: 0.5s;
+
CONTICELLO, Vincent P. Synthesis and characterization of elastin-mimetic
    }
+
protein gels derived from a well-defined polypeptide precursor.&nbsp;<i><span
 +
style='font-style:italic'>Macromolecules</span></i>, 2000, vol. 33, no 13, p.
 +
4809-4821.</span></font></p>
  
    .ecuador_background_phases{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=ES-EC style='font-size:12.0pt;line-height:150%;
      height: 60%;
+
font-family:"Arial",sans-serif;background:white'>MARTÍNEZ-OSORIO, Hernán, et
      display: flex;
+
al. </span></font><font size=3 face=Arial><span lang=EN-US style='font-size:
      position: absolute;
+
12.0pt;line-height:150%;font-family:"Arial",sans-serif;background:white'>Genetically
      align-self: center;
+
engineered elastin-like polymer as a substratum to culture cells from the
      top: 160px;
+
ocular surface.&nbsp;<i><span style='font-style:italic'>Current eye research</span></i>,
      display: none;
+
2009, vol. 34, no 1, p. 48-56.</span></font></p>
      margin: auto;
+
      overflow-x: hidden;
+
      overflow-y: hidden;
+
      transition: 0.5s;
+
    }
+
  
    .ecuador_backgound_phase {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 25%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 100%;
+
font-family:"Arial",sans-serif'>Guan, H., Gurau, G. &amp; Rogers, R. (2012).
      position: absolute;
+
Ionic liquid processing of cellulose. <i><span style='font-style:italic'>Chemical
      left: 7%;
+
Society Reviews</span></i>. Issue 4, 2012</span></font></p>
      border-radius: 1%;
+
      transition: 0.2s;
+
    }
+
  
    .ecuador_backgound_phase:hover{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      -webkit-box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      -moz-box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
+
font-family:"Arial",sans-serif'>Poon, D., Withers, Stephen., and McIntosh, L.
      box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
+
(2006). Direct demonstration of the flexibility of the glycosylated
      cursor: pointer;
+
proline-threonine linker in the Cellulomonas fimi Xylanase Cex through NMR
    }
+
spectroscopic analysis. <i><span style='font-style:italic'>The Journal of
 +
Biological Chemistry </span></i><font color=black><span style='color:black;
 +
background:white'>282(3):2091-100.</span></font></span></font></p>
  
    .ecuador_background_phase_title {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 25px;
+
font-family:"Arial",sans-serif'>Gilkes, N., Henrissat, B., Kilburn, D., Miller,
      color: #1A1A1A;
+
R. &amp; Warren, R. (1991). Domains in microbial beta-1, 4-glycanases: sequence
      font-size: 20px;
+
conservation, function, and enzyme families. <i><span style='font-style:italic'>Microbiology
      font-weight: 600;
+
Reviews</span></i>. 55, 303–315</span></font></p>
      justify-content: center;
+
      margin: auto;
+
  
      margin-top: 15px;
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      text-align: center;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif'>Zhang, M., Wu, Sheng-Cheng., Zhou, W. &amp; Xu,
 +
B. (2012). Imaging and Measuring Single-Molecule Interaction between a
 +
Carbohydrate-Binding Module and Natural Plant Cell Wall Cellulose. <i><span
 +
style='font-style:italic'>The Journal of Physical Chemistry</span></i> 116,
 +
9949&#8722;9956</span></font></p>
  
    #phase_1 {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-color: #EB984E;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      animation-name: slide-in;
+
font-family:"Arial",sans-serif'>Schaerli, Y., Munteanu, A., Gili, M.,
      animation-duration: 0.75s;
+
Cotterell, J., Sharpe, J., &amp; Isalan, M. (2014). A unified design space of
    }
+
synthetic stripe-forming networks.&nbsp;Nature communications,&nbsp;5, 4905.</span></font></p>
  
    #phase_2 {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-color: #00A99D;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      animation-name: slide-in-up;
+
font-family:"Arial",sans-serif'>Pédelacq, J. D., Cabantous, S., Tran, T.,
      animation-duration: 0.75s;
+
Terwilliger, T. C., &amp; Waldo, G. S. (2006). Engineering and characterization
      left: 37.5%;
+
of a superfolder green fluorescent protein.&nbsp;Nature
      animation-delay: 0.5s;
+
biotechnology,&nbsp;24(1), 79.</span></font></p>
      animation-fill-mode: backwards;
+
    }
+
  
    #phase_3 {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-color: #3498DB;
+
face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>Tanenbaum,
      animation-name: slide-in-oposite;
+
M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., &amp; Vale, R. D. (2014). </span></font><font
      animation-duration: 0.75s;
+
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      left: 67.5%;
+
font-family:"Arial",sans-serif'>A protein-tagging system for signal
      animation-delay: 1s;
+
amplification in gene expression and fluorescence imaging.&nbsp;</span></font><font
      animation-fill-mode: backwards;
+
size=3 face=Arial><span lang=ES-EC style='font-size:12.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif'>Cell,&nbsp;159(3), 635-646.</span></font></p>
  
    .ecuador_background_phase_logo {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 64px;
+
face=Arial><span lang=ES-EC style='font-size:12.0pt;line-height:150%;
      height: 64px;
+
font-family:"Arial",sans-serif'>Francisca Pulido, J. G. (10 de 12 de 2013).
      position: absolute;
+
Actualidad Médica . </span></font><font size=3 face=Arial><span lang=EN-US
      bottom: 0px;
+
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>Obtenido
      margin-bottom: 5px;
+
de BMP-2 in Traumatology. Advances in Tissue Engineering: <a
      margin-left: 5px;
+
href="https://www.actualidadmedica.es/archivo/2013/790/rev01.html">https://www.actualidadmedica.es/archivo/2013/790/rev01.html</a></span></font></p>
    }
+
  
    #phase_1_logo{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-image: url(https://static.igem.org/mediawiki/2018/0/0c/T--Ecuador--Phase--1--black.png);
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      background-position: 5px -2px;
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
      background-repeat: no-repeat;
+
      background-size: 100%;
+
    }
+
  
    #phase_2_logo{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-image: url(https://static.igem.org/mediawiki/2018/9/9f/T--Ecuador--Phase--2--black.png);
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      background-position: center;
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
      background-repeat: no-repeat;
+
      background-size: 80%;
+
    }
+
  
    #phase_3_logo{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-image: url(https://static.igem.org/mediawiki/2018/5/59/T--Ecuador--Phase--3--black.png);
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      background-position: center;
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
      background-repeat: no-repeat;
+
      background-size: 65%;
+
    }
+
  
    .ecuador_background_separator_1 {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 140px;
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
    }
+
  
    .ecuador_backgound_phase_more {
 
      position: absolute;
 
      left: 80%;
 
      width: auto;
 
      height: auto;
 
      color: #1A1A1A;
 
      font-size: 20px;
 
      bottom: 7.5%;
 
    }
 
 
    .phase_menu_chooser {
 
      width: 80px;
 
      height: auto;
 
      position: fixed;
 
      right: 50px;
 
      top: 130px;
 
      z-index: 5;
 
      display: none;
 
      animation-name: slide-in-oposite-chooser;
 
      animation-duration: 0.5s;
 
    }
 
 
    .phase_menu_option {
 
      width: 100%;
 
      height: 80px;
 
      position: relative;
 
      border-radius: 100%;
 
      margin-top: 5%;
 
      transition: 0.5s;
 
      opacity: 0.9;
 
    }
 
 
    .phase_menu_option:hover {
 
      -webkit-box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
 
      -moz-box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
 
      box-shadow: 1px 1px 16px -1px rgba(0,0,0,0.75);
 
      cursor: pointer;
 
      opacity: 1;
 
    }
 
 
    #phase_1_menu_option {
 
      background-color: #EB984E;
 
      background-image: url(https://static.igem.org/mediawiki/2018/0/0c/T--Ecuador--Phase--1--black.png);
 
      background-position: 10px 11px;
 
      background-repeat: no-repeat;
 
      background-size: 80%;
 
    }
 
 
    #phase_2_menu_option {
 
      background-color: #00A99D;
 
      background-image: url(https://static.igem.org/mediawiki/2018/9/9f/T--Ecuador--Phase--2--black.png);
 
      background-position: center;
 
      background-repeat: no-repeat;
 
      background-size: 70%;
 
    }
 
 
    #phase_3_menu_option {
 
      background-color: #3498DB;
 
      background-image: url(https://static.igem.org/mediawiki/2018/5/59/T--Ecuador--Phase--3--black.png);
 
      background-position: 14px 12px;
 
      background-repeat: no-repeat;
 
      background-size: 60%;
 
    }
 
 
    .phase_1_main_container {
 
      width: 100%;
 
      position: absolute;
 
      height: 500px;
 
      top: 150px;
 
      display: none;
 
      transition: 0.5s;
 
      animation-name: slide-in;
 
      animation-duration: 0.5s;
 
    }
 
 
    .phase_2_main_container {
 
      width: 100%;
 
      position: absolute;
 
      height: 500px;
 
      top: 150px;
 
      display: none;
 
      transition: 0.5s;
 
      animation-name: slide-in;
 
      animation-duration: 0.5s;
 
    }
 
 
    .phase_3_main_container {
 
      width: 100%;
 
      position: absolute;
 
      height: 500px;
 
      top: 150px;
 
      display: none;
 
      transition: 0.5s;
 
      animation-name: slide-in;
 
      animation-duration: 0.5s;
 
    }
 
 
    .ecuador_phase_summary {
 
      width: 90%;
 
      height: 65%;
 
      position: relative;
 
      left: 5%;
 
      top: 1.5%;
 
      color: #1A1A1A;
 
      font-size: 18px;
 
      text-align: justify;
 
    }
 
 
    .ecuador_phase_subtitle {
 
      font-weight: 600;
 
      color: #1A1A1A;
 
    }
 
 
    @media only screen and (max-device-width: 600px) {
 
      .menu_options_container {
 
          display: none;
 
      }
 
    }
 
 
    @media only screen and (max-width: 600px) {
 
      .menu_options_container {
 
          display: none;
 
      }
 
    }
 
 
  </style>
 
 
 
  <div id="phase_menu_chooser" class="phase_menu_chooser">
 
    <div onclick="chosePhase(1)" id="phase_1_menu_option" class="phase_menu_option">
 
 
    </div>
 
    <div onclick="chosePhase(2)" id="phase_2_menu_option" class="phase_menu_option">
 
 
    </div>
 
    <div onclick="chosePhase(3)" id="phase_3_menu_option" class="phase_menu_option">
 
 
    </div>
 
  </div>
 
  <div class="ecuador_background_container">
 
    <div id="ecuador_background_title_cotainer" class="ecuador_background_title_cotainer">
 
      PROJECT BACKGROUND
 
    </div>
 
    <div id="ecuador_background_team_main_cotainer" class="ecuador_background_team_main_cotainer">
 
      <div id="ecuador_background_team_text_cotainer" class="ecuador_background_team_text_cotainer">
 
        <div id="igem" class="ecuador_background_team_title_text_cotainer">
 
          iGEM
 
        </div>
 
        <div id="team" class="ecuador_background_team_title_text_cotainer">
 
          TEAM
 
        </div>
 
        <div id="ecuador" class="ecuador_background_team_title_text_cotainer">
 
          ECUADOR
 
        </div>
 
      </div>
 
      <div id="ecuador_background_team_logo" class="ecuador_background_team_logo">
 
 
      </div>
 
    </div>
 
    <div class="take_a_look_button_container">
 
      <div id="take_a_look" class="take_a_look_button">
 
          TAKE A LOOK
 
      </div>
 
    </div>
 
    <div class="ecuador_background_logo">
 
      <div class="ecuador_background_logo_container" id="ecuador_background_logo_container">
 
 
      </div>
 
      <div class="ecuador_background_phases" id="ecuador_background_phases">
 
        <div onclick="chosePhase(1)" class="ecuador_backgound_phase" id="phase_1">
 
          <div class="ecuador_background_phase_title">
 
            PHASE 1 </br> BACTERIAL CELLULOSE
 
          </div>
 
          <div class="ecuador_phase_summary">
 
          </br>
 
          </br>
 
            Bacterial cellulose (BC) is a glucose polysaccharide that exhibits numerous properties such as unique nanostructure, high water holding capacity, high degree of polymerization, mechanical strength and high crystallinity </br>
 
            These properties clearly show that BC has tremendous potential and provide a promising future in various fie.
 
          </div>
 
          <div class="ecuador_background_phase_logo" id="phase_1_logo">
 
 
          </div>
 
          <div class="ecuador_backgound_phase_more">
 
            MORE
 
          </div>
 
        </div>
 
        <div  onclick="chosePhase(2)" class="ecuador_backgound_phase" id="phase_2">
 
          <div class="ecuador_background_phase_title">
 
            PHASE 2 </br> FUSION PROTEIN CBD-ELP-BMP2
 
          </div>
 
          <div class="ecuador_phase_summary">
 
          </br>
 
          </br>
 
            This fusion protein is composed by the cellulose binding domain cipA (CBD cipA) that exhibits a high affinity to cellulose, followed by an elastin like polypeptide (ELP) which allows us an easy and rapid purification and finally the bone morphogenetic protein 2 (BMP-2) that is a potent osteoinductive cytokine capable of inducing bone and cartilage formation.
 
          </div>
 
          <div class="ecuador_background_phase_logo" id="phase_2_logo">
 
 
          </div>
 
          <div class="ecuador_backgound_phase_more">
 
            MORE
 
          </div>
 
        </div>
 
        <div  onclick="chosePhase(3)" class="ecuador_backgound_phase" id="phase_3">
 
          <div class="ecuador_background_phase_title">
 
            PHASE 3 </br> BIOMATERIAL FUNCTIONALIZATION
 
          </div>
 
          <div class="ecuador_phase_summary">
 
          </br>
 
          </br>
 
            In order to get an elastic and functional biomaterial the fusion protein CBD-ELP-BMP2 was coupled to bacterial cellulose by a crosslinking process. This biomaterial can be used in biomedical applications focused on bone and cartilage formation because of its compatibility with the human body.
 
          </div>
 
          <div class="ecuador_background_phase_logo" id="phase_3_logo">
 
 
          </div>
 
          <div class="ecuador_backgound_phase_more">
 
            MORE
 
          </div>
 
        </div>
 
      </div>
 
    </div>
 
    <div class="ecuador_background_separator_1">
 
 
    </div>
 
    <div id="phase_1_main_container" class="phase_1_main_container">
 
<div id="ecuador_description_abstract_container" class="ecuador_description_abstract_container">
 
<div id="ecuador_description_abstract_container_title" class="ecuador_description_abstract_container_title">
 
            <p class=MsoNormal align=center style='text-align:center'><b style='mso-bidi-font-weight:
 
normal'><span lang=ES-EC style='font-size:24.0pt;line-height:107%;font-family:
 
"Candara",sans-serif;mso-bidi-font-family:"Times New Roman"'>PHASE 1 BACTERIAL CELLULOSE <o:p></o:p></span></b></p>
 
</div>
 
<div id="ecuador_description_abstract_text_container" class="ecuador_description_abstract_text_container">
 
Cellulose was the most common biopolymer in the world. The primary form in which the material is found is lignocellulotic in trees, however there are other sources such as bacterial cellulose [1].This was first described by Luis Pasteur in the previous century and reported for the first time its use in a Philippine dessert called coconut cream, however, it was not until 1886 when it was reported as a type of cellulose in an acetic fermentation, after being observed as a floating film in a culture medium[2]. In recent years, several studies have been carried out on the usefulness of bacterial cellulose due to its high degree of purity and its simpler structure than that obtained from plants, in addition to the speed of polymer formation, reducing costs and environmental impact in the  purification process to eliminate the lignin and other impurities of the material to be applied in the industries[3].
 
</br>
 
Bacterial cellulose has been used mainly in the paper industry, in the food for the realization of various desserts and strong dishes and as a material for garment development, due to its great flexibility, it is also impregnated with several nanoparticles to give antimicrobial, antifungal capacities[4]. Its ability to be combined with other proteins gives it the advantage to create new polymers with other desired properties such as bioplastics and drug administrators when combined with therapeutic proteins[5]. The existing biocompatibility between bacterial cellulose and human cells has led to the use of the polymer as a matrix for the regeneration of organs and tissues such as cartilage and skin[6].
 
</br>
 
</br>
 
References
 
</br>
 
1. Ummatyotin, S., & Manuspiya, H. (2014). A critical review on cellulose: From fundamental to an approach on sensor technology . Renewable and Sustainable Energy Reviews, 402-409.</br>
 
2. Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Review bacterial cellulose-a masterpiece of nature's art . Journal of material science, 261-270.</br>
 
3. Foresti, L., Vazquez, A., & Boury, B. (2016). Appiation of bacterial cellulose as precusor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles. Carbohydrate polymers.</br>
 
4. MAneerung, T., Tokura, S., Rujiracanit, & R. (2007). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate polymers, 43-51.</br>
 
5. Helenius, C., Backhdal, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, & B. (2005). In vivo biocompatibility of bacterial cellulose. Wiley InterScience, 431-438.</br>
 
6. Backdahl, H., Helenius, G., Bodin, A., Naanmmark, U., Johansson, R., Risberg, B., & Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 2141-2149.</br>
 
</div>
 
    </div>
 
 
</div>
 
</div>
  
    <div id="phase_2_main_container" class="phase_2_main_container">
 
     
 
<div id="ecuador_description_abstract_container" class="ecuador_description_abstract_container">
 
      <div id="ecuador_description_abstract_container_title" class="ecuador_description_abstract_container_title">
 
        <p class=MsoNormal align=center style='text-align:center'><b style='mso-bidi-font-weight:
 
normal'><span lang=EN-US style='font-size:20.0pt;line-height:107%;font-family:
 
"Candara",sans-serif;mso-bidi-font-family:"Times New Roman";mso-ansi-language:
 
EN-US'>PHASE 2 FUSION PROTEIN CBD-ELP-BMP2<o:p></o:p></span></b></p>
 
      </div>
 
<div id="ecuador_description_abstract_text_container" class="ecuador_description_abstract_text_container">
 
  
 
 
<p class=MsoNormal align=center style='text-align:center;tab-stops:center 350.1pt'><img width=337 height=263
 
src="Background1_archivos/image003.png" align=left hspace=12
 
alt="Cuadro de texto: Animacion &#13;&#10;ELPs &#13;&#10;" v:shapes="Rectángulo_x0020_10"><![endif]><b
 
style='mso-bidi-font-weight:normal'><span lang=EN-US style='font-family:"Candara",sans-serif;
 
mso-fareast-font-family:Arial;mso-bidi-font-family:Arial;mso-ansi-language:
 
EN-US'>LASTIN-LIKE POLYPEPTIDES</span></b><b style='mso-bidi-font-weight:normal'><span
 
lang=EN-US style='font-family:"Candara",sans-serif;mso-ansi-language:EN-US'><o:p></o:p></span></b></p>
 
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-fareast-font-family:Arial;
 
mso-bidi-font-family:Arial;mso-ansi-language:EN-US'>Elastin-like polypeptides
 
(ELP) are genetically encodable artificial biopolymers. They are elastomeric
 
proteins formed by a repetitive pentapeptide of Val-Pro-<span class=SpellE>Gly</span>-<span
 
class=SpellE>Xaa-Gly</span> sequence, <span class=SpellE>Xaa</span> can be any
 
amino acid except proline. <sup>[1]</sup>. <o:p></o:p></span></p>
 
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-fareast-font-family:Arial;
 
mso-bidi-font-family:Arial;mso-ansi-language:EN-US'>ELPs are thermostable biopolymers
 
whose properties vary depending on the temperature, pH or ionic strength. They
 
can pass from a soluble state to an insoluble one and reversibly depending on
 
their transition temperature (Tt) <sup>[2]</sup>, at temperatures lower than
 
the Tt ELPs are soluble, but insoluble when the temperature exceeds the Tt.
 
This property is maintained even when they are fused with other proteins and
 
has been used in protein purification. The amino acid residues that contain
 
groups susceptible to ionization result in a polymer with a Tt regulated by
 
changes in pH, in addition, the substitution of the <span class=SpellE>Xaa</span>
 
residue allows ELP to be designed with a desired <span class=GramE>Tt<sup>[</sup></span><sup>3]</sup>.<span
 
style='mso-spacerun:yes'>  </span><o:p></o:p></span></p>
 
 
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-fareast-font-family:Arial;
 
mso-bidi-font-family:Arial;mso-ansi-language:EN-US'>In biomedicine, ELPs have
 
applications in the specific drug delivery, in tissue engineering and
 
regenerative medicine. It has been possible to selectively transport
 
antineoplastic drugs to pathologically changed tissues, allowing the
 
polymer-drug conjugates to accumulate in the vicinity of a <span class=SpellE>tumour</span>,
 
showing a lower toxicity compared to free-running drugs. <sup>[1]</sup>. <o:p></o:p></span></p>
 
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-fareast-font-family:Arial;
 
mso-bidi-font-family:Arial;mso-ansi-language:EN-US'>In regenerative medicine,
 
ELPs have been used as scaffolds in tissue regeneration, and have shown
 
promising results in treatments for articular cartilage damage, where a
 
hydrogel made of ELP is used, in which it effectively contributed to the production
 
of a cartilage matrix. Other studies show that ELPs conjugated with polymers
 
such as polyacrylic acid and polyethyleneimine can strongly influence the
 
aggregation, morphology and differentiated function of hepatocytes in vitro,
 
showing the ability to use ELP in the regeneration of liver tissue <sup>[1]</sup>.
 
In addition, ELPs have shown promising results to be used in the engineering of
 
ocular surface tissues, and in vascular grafts <sup>[4]</sup>.<o:p></o:p></span></p>
 
</br>
 
References</br>
 
1. KOWALCZYK, Tomasz, et al. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World Journal of Microbiology and Biotechnology, 2014, vol. 30, no 8, p. 2141-2152.</br>
 
2. PARK, Ji-Eun; WON, Jong-In. Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnology and Bioprocess Engineering, 2009, vol. 14, no 5, p. 662.</br>
 
3. MCMILLAN, R. Andrew; CONTICELLO, Vincent P. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules, 2000, vol. 33, no 13, p. 4809-4821.</br>
 
4. MARTÍNEZ-OSORIO, Hernán, et al. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Current eye research, 2009, vol. 34, no 1, p. 48-56.</br>
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-ansi-language:EN-US'>
 
  <o:p>&nbsp;</o:p>
 
</span></p>
 
 
</div>
 
 
      <div id="ecuador_description_abstract_text_container" class="ecuador_description_abstract_text_container">
 
<p class=MsoNormal align=center style='text-align:center;tab-stops:center 350.1pt'><b
 
style='mso-bidi-font-weight:normal'><span lang=EN-US style='font-family:"Candara",sans-serif;
 
mso-fareast-font-family:Arial;mso-bidi-font-family:Arial;mso-ansi-language:
 
EN-US'>SUPER FOLDER GREEN FLUORESCENT PROTEIN
 
  <o:p></o:p>
 
</span></b></p>
 
<p class=MsoNormal style='text-align:justify;tab-stops:center 350.1pt'>
 
 
 
  <img width=291 height=242
 
src="Background1_archivos/image006.png" align=left hspace=12
 
alt="Cuadro de texto: Proteina verde &#13;&#10;  &#13;&#10;" v:shapes="Rectángulo_x0020_12">
 
  <span
 
lang=ES-EC style='mso-ansi-language:EN-US'><span
 
style='mso-spacerun:yes'> </span></span><span lang=EN-US style='mso-ansi-language:
 
EN-US'>More complete variants of GFP are used as fusion markers and protein
 
    expression reporters, but fused proteins can reduce the yield, yield, and
 
    fluorescence of these <span class=GramE>GFPs.<sup>[</sup></span><sup>1] </sup>They
 
    perform the process properly, when expressed alone or when it is fused to
 
    well-folded proteins; In addition, the resistance of GFP is dependent on the
 
    chemistry and thermal denaturation. In this project we will use a GFP
 
    super-folder, which is a variation of the green fluorescent protein (GFP).
 
    Frequently, wild-type GFP is misfolded when expressed in E. coli and when
 
    expressed as fusions with other proteins. Unlike this one, the GFP super-folder
 
    contains 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T<sup>[2]</sup>,
 
    giving it a better tolerance to circular permutation, greater resistance to
 
    chemical denaturing<sup>[3]</sup> and better folding kinetics. Therefore, it
 
    can be folded correctly even though the fused protein is not well folded. In
 
    2006 it was evidenced through X-ray crystallographic structural analysis, the
 
    presence of a network of five-member ion pairs in the GFP <span class=SpellE>superfolder</span>,
 
    based on its S30R mutation; and thus improving its folding compared to the GFP
 
    reporter.
 
<br>
 
 
  <o:p></o:p>
 
</span></p>
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-ansi-language:EN-US'>
 
  <o:p>&nbsp;</o:p>
 
</span></p>
 
<p class=MsoNormal align=center style='text-align:center'>
 
  <img width=251 height=204
 
src="Background1_archivos/image008.png" align=right hspace=12
 
alt="Cuadro de texto: Proteina cafe &#13;&#10;  &#13;&#10;" v:shapes="Rectángulo_x0020_17">
 
  <![endif]>
 
  <span
 
lang=EN-US style='font-family:"Candara",sans-serif;mso-ansi-language:EN-US'><br>
 
  </span><b style='mso-bidi-font-weight:normal'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-fareast-font-family:Arial;
 
mso-bidi-font-family:Arial;mso-ansi-language:EN-US'>BONE MORPHOGENETIC PROTEIN
 
    II</span></b><span lang=EN-US style='font-family:"Candara",sans-serif;
 
mso-ansi-language:EN-US'>
 
  <o:p></o:p>
 
</span></p>
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-ansi-language:EN-US'>The discovery
 
  of BMPs by <span class=SpellE>Urist</span> in 1965 has been a breakthrough in
 
  research that has been shown that the protein is able to stimulate bone
 
  production. Due to these properties, this protein is currently used in various
 
  fields such as Traumatology, Tissue Engineering and orthopedic surgery in which
 
  recombinant human BMP2 (rhBMP2) is used. The implantation of BMP2 in a collagen
 
  sponge induces the formation of new bone and can be used as a treatment for
 
  certain bone <span class=GramE>defects<sup>[</sup></span><sup>4]</sup>.
 
  <o:p></o:p>
 
</span></p>
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-ansi-language:EN-US'>Oral surgery
 
  has benefited in particular with the commercialization of this protein, since
 
  the use of BMP2 in absorbable collagen sponges has significantly reduced the
 
  costs of the interventions and the pain suffered by patients with degenerative
 
  disease of the lumbar discotheques.
 
 
  <o:p></o:p>
 
</span></p>
 
<p>References<br>
 
  1.  Schaerli, Y., Munteanu, A., Gili, M.,  Cotterell, J., Sharpe, J., &amp; Isalan, M. (2014). A unified design space of  synthetic stripe-forming networks.&nbsp;Nature communications,&nbsp;5, 4905.<br>
 
  2.  Pédelacq, J. D., Cabantous, S., Tran, T.,  Terwilliger, T. C., &amp; Waldo, G. S. (2006). Engineering and characterization  of a superfolder green fluorescent protein.&nbsp;Nature  biotechnology,&nbsp;24(1), 79.<br>
 
  3.  Tanenbaum, M. E., Gilbert, L. A., Qi, L. S.,  Weissman, J. S., &amp; Vale, R. D. (2014). A protein-tagging system for signal  amplification in gene expression and fluorescence  imaging.&nbsp;Cell,&nbsp;159(3), 635-646.<br>
 
  4.  Francisca Pulido, J. G. (10 de 12 de 2013).  Actualidad Médica . Obtenido de BMP-2 in Traumatology. Advances in Tissue  Engineering: https://www.actualidadmedica.es/archivo/2013/790/rev01.html&nbsp;   </p>
 
      </div>
 
   
 
    <div class="ecuador_description_separator">
 
<p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-family:"Candara",sans-serif;mso-ansi-language:EN-US'>
 
  <o:p>&nbsp;</o:p>
 
</span></p>
 
    </div>
 
<div id="ecuador_description_abstract_text_container" class="ecuador_description_abstract_text_container">
 
  <p class=MsoNormal align=center style='text-align:center'><b style='mso-bidi-font-weight:
 
normal'><span lang=EN-US style='font-size:16.0pt;mso-bidi-font-size:11.0pt;
 
line-height:107%;font-family:"Candara",sans-serif;mso-ansi-language:EN-US'>CELLULOSE-BINDING
 
    DOMAINS
 
    <o:p></o:p>
 
  </span></b></p>
 
  <p class=MsoNormal style='text-align:justify'>
 
   
 
    <img width=352 height=296
 
src="Background1_archivos/image010.png" align=left hspace=12
 
alt="Cuadro de texto: Animacion &#13;&#10;CBDs &#13;&#10;" v:shapes="Rectángulo_x0020_21">
 
    <![endif]>
 
    <span
 
lang=EN-US style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height:107%;
 
font-family:"Candara",sans-serif;mso-ansi-language:EN-US'>Cellulose, the most
 
      abundant biopolymer and <span class=SpellE>biorenewable</span> compound Earth,
 
      is a recalcitrant <span class=GramE>polysaccharide<sup>[</sup></span><sup>1]</sup>.
 
      Cellulolytic organisms are capable of degrading cellulose which involves
 
      excretion of endo- and <span class=SpellE>exo-glucanases</span> as well as
 
      glucosidases. Structurally, these enzymes are modular, consisting of a
 
      catalytic domain and cellulose-binding domain (CBD), as well as possible
 
      ancillary <span class=GramE>domains<sup>[</sup></span><sup>2]</sup>.<span
 
style='mso-spacerun:yes'>  </span>Because of the modules play generally their
 
      respective role independently, the CBD has been studied to improve the
 
      cellulose degradation as well as to bind other functional proteins. It has been <span class=SpellE>foun</span> that CBD can be found at the N-terminal or at
 
      the C-terminal region of these <span class=GramE>enzymes<sup>[</sup></span><sup>4]</sup>.
 
  <o:p></o:p>
 
    </span></p>
 
  <p class=MsoNormal style='text-align:justify'><span class=GramE><span
 
lang=EN-US style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height:107%;
 
font-family:"Candara",sans-serif;mso-ansi-language:EN-US'>In order to</span></span><span
 
lang=EN-US style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height:107%;
 
font-family:"Candara",sans-serif;mso-ansi-language:EN-US'> evaluate an
 
    N-terminal and a C-terminal CBD we chose the domain of <i style='mso-bidi-font-style:
 
normal'>Clostridium</i> <span class=SpellE><i style='mso-bidi-font-style:normal'>thermocellum</i></span> <span class=SpellE>cellulosome</span>-scaffolding protein A (<span
 
class=SpellE>cipA</span>) and the domain of <span class=SpellE><i
 
style='mso-bidi-font-style:normal'>Cellulomonas</i></span><i style='mso-bidi-font-style:
 
normal'> <span class=SpellE>fimi</span></i> <span class=SpellE>exoglucanase</span> (<span class=SpellE>Cex</span>). We used the <span class=SpellE>CBDcipA</span> because the high affinity among other CBDs reported by the <span class=SpellE>Imperail</span> College London team (2014).
 
  <o:p></o:p>
 
  </span></p>
 
  <p class=MsoNormal style='text-align:justify'><span lang=EN-US
 
style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height:107%;font-family:
 
"Candara",sans-serif;mso-ansi-language:EN-US'>The modules are joined by linkers
 
    that are variable in terms of length and amino acid composition. The length
 
    ranges from a few to up to 150 amino acids whereas the sequences are rich in
 
    proline or/and hydroxyamino <span class=GramE>acids<sup>[</sup></span><sup>3]</sup>.
 
    Because of the synergistic activity between the catalytic and cellulose-binding
 
    domain is dependent of the length and/or linker sequence, we have used their
 
    respective endogenous <span class=GramE>linkers<sup>[</sup></span><sup>2]</sup>.<span
 
style='mso-spacerun:yes'>  </span>
 
  <o:p></o:p>
 
  </span></p>
 
  <p class=MsoListParagraph><span lang=EN-US style='font-size:8.0pt;font-family:
 
"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:
 
Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;
 
mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;
 
mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-no-proof:yes'>References</span><span
 
lang=EN-US style='font-size:8.0pt;font-family:"Candara",sans-serif;mso-fareast-font-family:
 
Calibri;mso-fareast-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
 
mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
 
EN-US'>
 
    <o:p></o:p>
 
  </span></p>
 
  <p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;text-align:
 
justify'><span lang=EN-US style='font-size:8.0pt;line-height:107%;mso-ansi-language:
 
EN-US'>1. Guan, H., <span class=SpellE>Gurau</span>, G. &amp; Rogers, R.
 
    (2012). Ionic liquid processing of cellulose. <i style='mso-bidi-font-style:
 
normal'>Chemical Society Reviews</i>. Issue 4, 2012
 
  <o:p></o:p>
 
  </span></p>
 
  <p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;text-align:
 
justify'><span lang=EN-US style='font-size:8.0pt;line-height:107%;mso-ansi-language:
 
EN-US'>2. Poon, D., Withers, Stephen., and McIntosh, L. (2006). Direct
 
    demonstration of the flexibility of the glycosylated proline-threonine linker
 
    in the <span class=SpellE>Cellulomonas</span> <span class=SpellE>fimi</span> Xylanase <span class=SpellE>Cex</span> through NMR spectroscopic analysis. <i
 
style='mso-bidi-font-style:normal'>The Journal of Biological Chemistry </i></span><span
 
lang=EN-US style='font-size:8.0pt;line-height:107%;mso-bidi-font-family:Arial;
 
color:black;background:white;mso-ansi-language:EN-US'>282(3):2091-100.
 
  <o:p></o:p>
 
</span></p>
 
  <p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;text-align:
 
justify'><span lang=EN-US style='font-size:8.0pt;line-height:107%;mso-ansi-language:
 
EN-US'>3. <span class=SpellE>Gilkes</span>, N., <span class=SpellE>Henrissat</span>,
 
    B., Kilburn, D., Miller, R. &amp; Warren, R. (1991). Domains in microbial
 
    beta-1, 4-glycanases: sequence conservation, function, and enzyme families. <i
 
style='mso-bidi-font-style:normal'>Microbiology Reviews</i>. 55, 303–315
 
  <o:p></o:p>
 
  </span></p>
 
  <p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;text-align:
 
justify'><span lang=EN-US style='font-size:8.0pt;line-height:107%;mso-ansi-language:
 
EN-US'>4. Zhang, M., Wu, Sheng-Cheng., Zhou, W. &amp; Xu, B. (2012). Imaging
 
    and Measuring Single-Molecule Interaction between a Carbohydrate-Binding Module
 
    and Natural Plant Cell Wall Cellulose. <i style='mso-bidi-font-style:normal'>The
 
      Journal of Physical Chemistry</i> 116, 9949&#8722;9956
 
  <o:p></o:p>
 
  </span></p>
 
</div>
 
</div>
 
 
    </div>
 
 
    <div id="phase_3_main_container" class="phase_3_main_container">
 
      Phase 3
 
    </div>
 
    <div class="ecuador_footer" id="ecuador_footer">
 
    <div class="ecuador_footer_igem_logo">
 
 
      </div>
 
      <div class="ecuador_footer_information_layout">
 
        <div class="ecuador_footer_information_container">
 
          <div class="ecuador_footer_information_title_container">
 
            SPONSORS
 
<div class="ecuador_sponsors_icons_container">
 
<a href="http://www.espe.edu.ec/">
 
<div id="espe" class="ecuador_sponsors_icon">
 
</div>
 
</a>
 
<a href="https://biotecnologia.espe.edu.ec/">
 
<div id="ing_bio" class="ecuador_sponsors_icon">
 
 
</div>
 
</div>
</a>
+
</div>
              <a href="https://www.facebook.com/IDgenlaboratorio/">
+
</div>
              <div id="idgen" class="ecuador_sponsors_icon">
+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
              </div>
+
              </a>
+
              <a href="https://www.facebook.com/wawatukii/">
+
              <div id="tukii" class="ecuador_sponsors_icon">
+
              </div>
+
              </a>
+
            </div>
+
          </div>
+
        </div>
+
        <div class="ecuador_footer_information_container">
+
          <div class="ecuador_footer_information_title_container">
+
            FOLLOW US
+
            <div class="ecuador_follow_us_icons_container">
+
<a href="https://www.facebook.com/BiosinEcuador/">
+
<div id="facebook" class="ecuador_follow_us_icon">
+
</div>
+
</a>
+
+
<a href="https://www.instagram.com/igem.espe.ecuador/">
+
<div id="instagram" class="ecuador_follow_us_icon">
+
</div>
+
</a>
+
            </div>
+
          </div>
+
        </div>
+
        <div class="ecuador_footer_information_container">
+
          <div class="ecuador_footer_information_title_container">
+
            CONTACT US
+
<div class="ecuador_information_data_container">
+
+
m.me/BiosinEcuador
+
</div>
+
          </div>
+
        </div>
+
      </div>
+
  </div>
+
  </div>
+
 
+
 
+
 
+
 
<script>
 
<script>
  document.getElementById("take_a_look").onclick = function() {
+
$(document).ready(function(){
    document.getElementById("take_a_look").style.display = "none";
+
$("#type").mouseenter(function(){
    var backgroundPhasesDiv = document.getElementById("ecuador_background_phases");
+
    $(".textdis").show();
    backgroundPhasesDiv.style.display = "flex";
+
});
    var igemEcuadorTitle = document.getElementById("ecuador_background_team_text_cotainer");
+
$("#label-neg-c").mouseenter(function(){
    igemEcuadorTitle.style.marginLeft = "-37%";
+
    $(".loc-neg-c").show();
    igemEcuadorTitle.style.width = "56.5%";
+
});
    igemEcuadorTitle.style.opacity = "0";
+
$("#label-pos-c").mouseenter(function(){
    var backgoundTitle = document.getElementById("ecuador_background_title_cotainer");
+
    $(".loc-pos-c").show();
    backgoundTitle.style.display = "flex";
+
});
    var backgroundDiv = document.getElementById("ecuador_background_team_main_cotainer");
+
$("#label-td1").mouseenter(function(){
    backgroundDiv.style.opacity = "0";
+
    $(".loc-td1").show();
    backgroundDiv.style.visibility = "hidden";
+
});
  }
+
$("#label-td2").mouseenter(function(){
 
+
    $(".loc-td2").show();
  function chosePhase(phase){
+
});
    var backgroundPhasesDiv =  document.getElementById("ecuador_background_phases");
+
$("#label-td3").mouseenter(function(){
    backgroundPhasesDiv.style.opacity = "0";
+
    $(".loc-td3").show();
    backgroundPhasesDiv.style.visibility = "hidden";
+
});
    if(phase == 1){
+
$("#label-td4").mouseenter(function(){
      document.getElementById("phase_1_menu_option").style.display = "none";
+
    $(".loc-td4").show();
      document.getElementById("phase_2_menu_option").style.display = "block";
+
});
      document.getElementById("phase_3_menu_option").style.display = "block";
+
$("#label-td5").mouseenter(function(){
      document.getElementById("phase_1_main_container").style.display = "flex";
+
    $(".loc-td5").show();
      document.getElementById("phase_2_main_container").style.display = "none";
+
});
      document.getElementById("phase_3_main_container").style.display = "none";
+
$("#label-td6").mouseenter(function(){
document.getElementById("ecuador_footer").style.top = "100px";
+
    $(".loc-td6").show();
    }
+
});
    if(phase == 2){
+
      document.getElementById("phase_2_menu_option").style.display = "none";
+
      document.getElementById("phase_1_menu_option").style.display = "block";
+
$("#type").mouseleave(function(){
      document.getElementById("phase_3_menu_option").style.display = "block";
+
$(".textdis").hide();
      document.getElementById("phase_2_main_container").style.display = "flex";
+
});
      document.getElementById("phase_1_main_container").style.display = "none";
+
$("#label-neg-c").mouseleave(function(){
      document.getElementById("phase_3_main_container").style.display = "none";
+
$(".loc-neg-c").hide();
document.getElementById("ecuador_footer").style.top = "1500px";
+
});
    }
+
$("#label-pos-c").mouseleave(function(){
    if(phase == 3){
+
$(".loc-pos-c").hide();
      document.getElementById("phase_3_menu_option").style.display = "none";
+
});
      document.getElementById("phase_2_menu_option").style.display = "block";
+
$("#label-td1").mouseleave(function(){
      document.getElementById("phase_1_menu_option").style.display = "block";
+
$(".loc-td1").hide();
      document.getElementById("phase_3_main_container").style.display = "flex";
+
});
      document.getElementById("phase_2_main_container").style.display = "none";
+
$("#label-td2").mouseleave(function(){
      document.getElementById("phase_1_main_container").style.display = "none";
+
$(".loc-td2").hide();
document.getElementById("ecuador_footer").style.top = "100px";
+
});
    }
+
$("#label-td3").mouseleave(function(){
    var phaseMenuChooser = document.getElementById("phase_menu_chooser");
+
$(".loc-td3").hide();
    phaseMenuChooser.style.display = "block"
+
});
  }
+
$("#label-td4").mouseleave(function(){
 
+
$(".loc-td4").hide();
 +
});
 +
$("#label-td5").mouseleave(function(){
 +
$(".loc-td5").hide();
 +
});
 +
$("#label-td6").mouseleave(function(){
 +
$(".loc-td6").hide();
 +
});
 +
 +
 +
});
 +
 +
 +
 
</script>
 
</script>
 
 
</html>
 
</html>
 +
{{Ecuador/footer}}

Latest revision as of 04:08, 19 November 2018

C-lastin, Interlab

PHASE 1

BACTERIAL CELLULOSE

Cellulose was the most common biopolymer in the world. The primary form in which the material is found is lignocellulotic in trees, however there are other sources such as bacterial cellulose [1].This was first described by Luis Pasteur in the previous century and reported for the first time its use in a Philippine dessert called coconut cream, however, it was not until 1886 when it was reported as a type of cellulose in an acetic fermentation, after being observed as a floating film in a culture medium[2]. In recent years, several studies have been carried out on the usefulness of bacterial cellulose due to its high degree of purity and its simpler structure than that obtained from plants, in addition to the speed of polymer formation, reducing costs and environmental impact in the purification process to eliminate the lignin and other impurities of the material to be applied in the industries[3].

Bacterial cellulose has been used mainly in the paper industry, in the food for the realization of various desserts and strong dishes and as a material for garment development, due to its great flexibility, it is also impregnated with several nanoparticles to give antimicrobial, antifungal capacities[4]. Its ability to be combined with other proteins gives it the advantage to create new polymers with other desired properties such as bioplastics and drug administrators when combined with therapeutic proteins[5]. The existing biocompatibility between bacterial cellulose and human cells has led to the use of the polymer as a matrix for the regeneration of organs and tissues such as cartilage and skin[6].

PHASE 2 FUSION PROTEIN CBD-ELP-BMP2

LASTIN-LIKE POLYPEPTIDES

Elastin-like polypeptides (ELP) are genetically encodable artificial biopolymers. They are elastomeric proteins formed by a repetitive pentapeptide of Val-Pro-Gly-Xaa-Gly sequence, Xaa can be any amino acid except proline. [1].

ELPs are thermostable biopolymers whose properties vary depending on the temperature, pH or ionic strength. They can pass from a soluble state to an insoluble one and reversibly depending on their transition temperature (Tt) [2], at temperatures lower than the Tt ELPs are soluble, but insoluble when the temperature exceeds the Tt. This property is maintained even when they are fused with other proteins and has been used in protein purification. The amino acid residues that contain groups susceptible to ionization result in a polymer with a Tt regulated by changes in pH, in addition, the substitution of the Xaa residue allows ELP to be designed with a desired Tt[3].

In biomedicine, ELPs have applications in the specific drug delivery, in tissue engineering and regenerative medicine. It has been possible to selectively transport antineoplastic drugs to pathologically changed tissues, allowing the polymer-drug conjugates to accumulate in the vicinity of a tumour, showing a lower toxicity compared to free-running drugs. [1].

In regenerative medicine, ELPs have been used as scaffolds in tissue regeneration, and have shown promising results in treatments for articular cartilage damage, where a hydrogel made of ELP is used, in which it effectively contributed to the production of a cartilage matrix. Other studies show that ELPs conjugated with polymers such as polyacrylic acid and polyethyleneimine can strongly influence the aggregation, morphology and differentiated function of hepatocytes in vitro, showing the ability to use ELP in the regeneration of liver tissue [1]. In addition, ELPs have shown promising results to be used in the engineering of ocular surface tissues, and in vascular grafts [4].

SUPER FOLDER GREEN FLUORESCENT PROTEIN

Proteina verde 
  
More complete variants of GFP are used as fusion markers and protein expression reporters, but fused proteins can reduce the yield, yield, and fluorescence of these GFPs.[1] They perform the process properly, when expressed alone or when it is fused to well-folded proteins; In addition, the resistance of GFP is dependent on the chemistry and thermal denaturation. In this project we will use a GFP super-folder, which is a variation of the green fluorescent protein (GFP). Frequently, wild-type GFP is misfolded when expressed in E. coli and when expressed as fusions with other proteins. Unlike this one, the GFP super-folder contains 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T[2], giving it a better tolerance to circular permutation, greater resistance to chemical denaturing[3] and better folding kinetics. Therefore, it can be folded correctly even though the fused protein is not well folded. In 2006 it was evidenced through X-ray crystallographic structural analysis, the presence of a network of five-member ion pairs in the GFP superfolder, based on its S30R mutation; and thus improving its folding compared to the GFP reporter.

 

Proteina cafe 
  
BONE MORPHOGENETIC PROTEIN II

The discovery of BMPs by Urist in 1965 has been a breakthrough in research that has been shown that the protein is able to stimulate bone production. Due to these properties, this protein is currently used in various fields such as Traumatology, Tissue Engineering and orthopedic surgery in which recombinant human BMP2 (rhBMP2) is used. The implantation of BMP2 in a collagen sponge induces the formation of new bone and can be used as a treatment for certain bone defects[4].

Oral surgery has benefited in particular with the commercialization of this protein, since the use of BMP2 in absorbable collagen sponges has significantly reduced the costs of the interventions and the pain suffered by patients with degenerative disease of the lumbar discotheques.

CELLULOSE-BINDING DOMAINS

Cellulose, the most abundant biopolymer and biorenewable compound Earth, is a recalcitrant polysaccharide[1]. Cellulolytic organisms are capable of degrading cellulose which involves excretion of endo- and exo-glucanases as well as glucosidases. Structurally, these enzymes are modular, consisting of a catalytic domain and cellulose-binding domain (CBD), as well as possible ancillary domains[2]. Because of the modules play generally their respective role independently, the CBD has been studied to improve the cellulose degradation as well as to bind other functional proteins. It has been foun that CBD can be found at the N-terminal or at the C-terminal region of these enzymes[4].

In order to evaluate an N-terminal and a C-terminal CBD we chose the domain of Clostridium thermocellum cellulosome-scaffolding protein A (cipA) and the domain of Cellulomonas fimi exoglucanase (Cex). We used the CBDcipA because the high affinity among other CBDs reported by the Imperail College London team (2014).

The modules are joined by linkers that are variable in terms of length and amino acid composition. The length ranges from a few to up to 150 amino acids whereas the sequences are rich in proline or/and hydroxyamino acids[3]. Because of the synergistic activity between the catalytic and cellulose-binding domain is dependent of the length and/or linker sequence, we have used their respective endogenous linkers[2].

 

References

Ummatyotin, S., & Manuspiya, H. (2014). A critical review on cellulose: From fundamental to an approach on sensor technology . Renewable and Sustainable Energy Reviews, 402-409.

Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Review bacterial cellulose-a masterpiece of nature's art . Journal of material science, 261-270.

Foresti, L., Vazquez, A., & Boury, B. (2016). Appiation of bacterial cellulose as precusor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles. Carbohydrate polymers.

MAneerung, T., Tokura, S., Rujiracanit, & R. (2007). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate polymers, 43-51.

Helenius, C., Backhdal, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, & B. (2005). In vivo biocompatibility of bacterial cellulose. Wiley InterScience, 431-438.

Backdahl, H., Helenius, G., Bodin, A., Naanmmark, U., Johansson, R., Risberg, B., & Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 2141-2149.

KOWALCZYK, Tomasz, et al. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World Journal of Microbiology and Biotechnology, 2014, vol. 30, no 8, p. 2141-2152.

PARK, Ji-Eun; WON, Jong-In. Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnology and Bioprocess Engineering, 2009, vol. 14, no 5, p. 662.

MCMILLAN, R. Andrew; CONTICELLO, Vincent P. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules, 2000, vol. 33, no 13, p. 4809-4821.

MARTÍNEZ-OSORIO, Hernán, et al. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Current eye research, 2009, vol. 34, no 1, p. 48-56.

Guan, H., Gurau, G. & Rogers, R. (2012). Ionic liquid processing of cellulose. Chemical Society Reviews. Issue 4, 2012

Poon, D., Withers, Stephen., and McIntosh, L. (2006). Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi Xylanase Cex through NMR spectroscopic analysis. The Journal of Biological Chemistry 282(3):2091-100.

Gilkes, N., Henrissat, B., Kilburn, D., Miller, R. & Warren, R. (1991). Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiology Reviews. 55, 303–315

Zhang, M., Wu, Sheng-Cheng., Zhou, W. & Xu, B. (2012). Imaging and Measuring Single-Molecule Interaction between a Carbohydrate-Binding Module and Natural Plant Cell Wall Cellulose. The Journal of Physical Chemistry 116, 9949−9956

Schaerli, Y., Munteanu, A., Gili, M., Cotterell, J., Sharpe, J., & Isalan, M. (2014). A unified design space of synthetic stripe-forming networks. Nature communications, 5, 4905.

Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature biotechnology, 24(1), 79.

Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., & Vale, R. D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3), 635-646.

Francisca Pulido, J. G. (10 de 12 de 2013). Actualidad Médica . Obtenido de BMP-2 in Traumatology. Advances in Tissue Engineering: https://www.actualidadmedica.es/archivo/2013/790/rev01.html