Difference between revisions of "Team:Ecuador/Background"

 
(45 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{Ecuador}}
 
{{Ecuador}}
 
<html>
 
<html>
 +
 +
<head>
 +
<meta charset="utf-8">
 +
<title>C-lastin, Interlab</title>
 
<style>
 
<style>
    @import url('https://fonts.googleapis.com/css?family=Questrial');
+
@charset "utf-8";
    *{
+
/* CSS Document */
        margin: 0px;
+
.ec--modeling--container{
        font-family: 'Questrial', sans-serif;
+
padding-top: 100px;
     }
+
padding-right: 14%;
     @keyframes fade-in {
+
padding-bottom: 100px;
      from {
+
padding-left: 38%;
        opacity: 0;
+
}
      }
+
.ec--main--title{
 +
text-align: center;
 +
padding-top: 30px;
 +
padding-right: 30px;
 +
padding-bottom: 30px;
 +
padding-left: 30px;
 +
}
 +
.ec--img--wwd--cont{
 +
text-align: center;
 +
padding-top: 20px;
 +
padding-right: 20px;
 +
padding-bottom: 20px;
 +
padding-left: 20px;
 +
}
 +
.ec--modeling--items{
 +
width: 270px;
 +
display: block;
 +
position: fixed;
 +
float: left;
 +
top: 250px; /*position: -webkit-sticky;
 +
position: sticky;
 +
padding-bottom: 0px;
 +
margin-top: 11.4em;*/
 +
left: 14%;
 +
line-height: 1.3;
 +
text-indent: inherit;
 +
}
 +
ul.circle {
 +
     list-style-type: circle;
 +
}
 +
.ec--biob--cont{
 +
padding-top: 20px;
 +
padding-right: 20px;
 +
padding-bottom: 20px;
 +
padding-left: 20px;
 +
}
 +
.textdis{
 +
     display:none;
 +
}
 +
.loc-neg-c{
 +
display: none;
 +
}
 +
.loc-pos-c{
 +
display: none;
 +
}
 +
.loc-td1{
 +
display: none;
 +
}
 +
.loc-td2{
 +
display: none;
 +
}
 +
.loc-td3{
 +
display: none;
 +
}
 +
.loc-td4{
 +
display: none;
 +
}
 +
.loc-td5{
 +
display: none;
 +
}
 +
.loc-td6{
 +
display: none;
 +
}
  
      to {
+
input:hover  {
        opacity: 1;
+
     background-color: brown;
      }
+
}
     }
+
    @keyframes slide-in {
+
      from {
+
        margin-left: -100%;
+
      }
+
  
      to {
+
#bigBox {
        margin-left: 0%;
+
  width:800px;
      }
+
  height: 300px;
    }
+
}
    .igem_2018_team_menu.displaying_menu {
+
#leftBox {
      display: none;
+
float: left;
    }
+
height: 300px;
    .ecuador_menu {
+
width: 390px;
      width: 100%;
+
margin: 0;
      height: 100px;
+
}
      position: fixed;
+
#rightBox {
      left: 0px;
+
  float:right;
      top: 15px;
+
  height:300px;
      background-color: #FFFFFF;
+
  width: 390px;
      animation-name: fade-in;
+
}
      animation-duration: 2s;
+
.ec--biobr--location--container{
      -webkit-box-shadow: 0px 3px 11px 0px rgba(0,0,0,0.75);
+
padding-top: 50px;
      -moz-box-shadow: 0px 3px 11px 0px rgba(0,0,0,0.75);
+
padding-right: 25px;
      box-shadow: 0px 3px 11px 0px rgba(0,0,0,0.75);
+
padding-bottom: 25px;
      display: flex;
+
padding-left: 25px;
      z-index: 5;
+
}
    }
+
.ec--h2{
 +
font-size: 25px;
 +
font-weight: bolder;
 +
display: block;
 +
margin-top: 15px;
 +
margin-bottom: 15px;
 +
clear: both;
 +
padding-top: 20px;
 +
padding-bottom: 20px;
 +
color: black;
 +
line-height: 40px;
 +
}
 +
.ec--p{
 +
display: block;
 +
line-height: 2;
 +
text-align: justify;
 +
font-size: 16px;
 +
}
 +
.ec--coll--video{
 +
display: block;
 +
clear: both;
 +
text-align: center;
 +
padding-top: 30px;
 +
padding-bottom: 30px;
 +
}
 +
.ec--coll--letter{
 +
text-align: justify;
 +
display: block;
 +
margin-left: 20px;
 +
margin-right: 20px;
 +
margin-top: 20px;
 +
margin-bottom: 20px;
 +
width: 900px;
 +
}
 +
.ec--img--surv{
 +
top: 0;
 +
bottom: 0;
 +
left: 0;
 +
right: 0;
 +
margin: auto;
 +
padding-top: 20px;
 +
padding-bottom: 20px;
 +
}
 +
.anchorOffset{
  
    .ecuador_home {
+
display: block !important;
      width: 16%;
+
position: relative !important;
      height: 100%;
+
top: -135px !important;
      display: flex;
+
visibility: hidden !important;
      justify-content: center;
+
      background-color: #154360;
+
      position: absolute;
+
      align-items: center;
+
      margin: auto auto;
+
      left: 1.5%;
+
      color: #FFF;
+
      transition: 0.5s;
+
      -webkit-box-shadow: inset -60px -33px 154px -24px rgba(33,47,60,1);
+
      -moz-box-shadow: inset -60px -33px 154px -24px rgba(33,47,60,1);
+
      box-shadow: inset -60px -33px 154px -24px rgba(33,47,60,1);
+
    }
+
  
    .ecuador_home:hover {
+
}
      cursor: pointer;
+
a.lateral{
      font-size: 15px;
+
  color: black;
      background-color: #154360;
+
  text-decoration: inherit;
      box-shadow: none;
+
  opacity: 1;
    }
+
  color: gray;
 +
  font-weight: 500;
 +
  font-size: 16px;
 +
}
 +
a.inner-link--active {
 +
  opacity: 1;
 +
  animation: bulge .5s ease;
 +
  -webkit-animation: bulge .5s ease;
 +
}
 +
.ec--h3{
 +
font-size: 22px;
 +
font-weight: bolder;
 +
display: block;
 +
margin-top: 15px;
 +
margin-bottom: 15px;
 +
clear: both;
 +
padding-top: 20px;
 +
 +
}
  
    .menu_options_container {
 
      width: 79%;
 
      height: 50px;
 
      position: absolute;
 
      left: 19%;
 
      top: 25px;
 
      display: flex;
 
      justify-content: center;
 
    }
 
  
    .menu_option {
+
</style>
      width: 16.66%;
+
      height: 100%;
+
</head>
      position: relative;
+
      justify-content: center;
+
      align-items: center;
+
      display: flex;
+
      color: #797D7F;
+
      transition: 0.2s;
+
      text-align: center;
+
    }
+
  
    .ecuador_href_text {
+
<body>
      width: 16.66% !important;
+
<div class="ec--modeling--container">
      height: 100% !important;
+
<div class="ec--first--section">
      position: relative !important;
+
<div class="ec--main--title">
      justify-content: center !important;
+
<a name="l1"  style="text-decoration: none;"></a>
      align-items: center !important;
+
<h1>
      display: flex !important;
+
BACKGROUND
      color: #797D7F !important;
+
</h1>
      transition: 0.2s !important;
+
</div>
      text-align: center !important;
+
<div class="ec--modeling--items">
      text-decoration: none !important;
+
<h3><a href="#l1" style="color:black; text-decoration: none">Index</a></h3>
    }
+
<ul class="circle">
 +
<li><a href="#l2" style="color:black; text-decoration: none">Phase 1</a></li>
 +
                <ul>
 +
                  <li><a href="#l3" style="color:black; text-decoration: none">Bacterial Cellulose</a></li>
 +
                </ul>
 +
<li><a href="#l4" style="color:black; text-decoration: none">Phase 2</a></li>
 +
<ul>
 +
                  <li><a href="#l5" style="color:black; text-decoration: none">Lastin-like polypeptides</a></li>
 +
<li><a href="#l6" style="color:black; text-decoration: none">Super folder green fluorescent protein</a></li>
 +
<li><a href="#l7" style="color:black; text-decoration: none">Bone morphogenetic protein II</a></li>
 +
<li><a href="#l8" style="color:black; text-decoration: none">Cellulose-binding domains</a></li>
 +
                </ul>
 +
                <li><a href="#l9" style="color:black; text-decoration: none">References</a></li>
 +
               
 +
</ul>
 +
</div>
 +
 +
</div>
 +
 +
<div class="ec--nau--content">
 +
 +
<div class=WordSection1>
  
    .ecuador_href_sub_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=5
      width: 100% !important;
+
face=Arial><span lang=EN-US style='font-size:16.0pt;line-height:150%;
      height: 40px !important;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l2"  style="text-decoration: none;"></a>PHASE 1</span></font></b></p>
      position: relative !important;
+
      text-align: left !important;
+
      text-indent: 20px !important;
+
      display: flex !important;
+
      background-color: #000 !important;
+
      margin: auto auto !important;
+
      align-items: center !important;
+
      transition: 0.2s !important;
+
      color: #D5DBDB !important;
+
      text-decoration: none !important;
+
    }
+
  
    .menu_option:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=4
      margin-top: 3px;
+
face=Arial><span lang=EN-US style='font-size:14.0pt;line-height:150%;
      cursor: pointer;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l3"  style="text-decoration: none;"></a>BACTERIAL CELLULOSE</span></font></b></p>
    }
+
  
    .menu_option:hover div.menu_sub_options_container{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      display: block;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif'>Cellulose was the most common biopolymer in the
 +
world. </span></font><font size=3 face=Arial><span lang=EN style='font-size:
 +
12.0pt;line-height:150%;font-family:"Arial",sans-serif'>The primary form in
 +
which the material is found is lignocellulotic in trees, however there are
 +
other sources such as bacterial cellulose </span></font><sup><font size=3
 +
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>[1]</span></font></sup><font size=3 face=Arial><span
 +
lang=EN-US style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>.</span></font><font
 +
size=3 face=Arial><span lang=EN style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>This was first described by Luis Pasteur in the
 +
previous century and reported for the first time its use in a Philippine
 +
dessert called coconut cream, however, it was not until 1886 when it was
 +
reported as a type of cellulose in an acetic fermentation, after being observed
 +
as a floating film in a culture medium</span></font><sup><font size=3
 +
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>[2]</span></font></sup><font size=3 face=Arial><span
 +
lang=EN style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>.
 +
In recent years, several studies have been carried out on the usefulness of
 +
bacterial cellulose due to its high degree of purity and its simpler structure
 +
than that obtained from plants, in addition to the speed of polymer formation,
 +
reducing costs and environmental impact in the  purification process to
 +
eliminate the lignin and other impurities of the material to be applied in the
 +
industries</span></font><sup><font size=3 face=Arial><span lang=EN-US
 +
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>[3]</span></font></sup><font
 +
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>.</span></font></p>
  
    .menu_sub_options_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 90%;
+
face=Arial><span lang=EN style='font-size:12.0pt;line-height:150%;font-family:
      height: auto;
+
"Arial",sans-serif'>Bacterial cellulose has been used mainly in the paper
      position: absolute;
+
industry, in the food for the realization of various desserts and strong dishes
      top: 50px;
+
and as a material for garment development, due to its great flexibility, it is
      background-color: #FFF;
+
also impregnated with several nanoparticles to give antimicrobial, antifungal
      border-top: solid 1px;
+
capacities</span></font><sup><font size=3 face=Arial><span lang=EN-US
      display: none;
+
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>[4]</span></font></sup><font
    }
+
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>.</span></font><font size=3 face=Arial><span
 +
lang=EN style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>
 +
Its ability to be combined with other proteins gives it the advantage to create
 +
new polymers with other desired properties such as bioplastics and drug
 +
administrators when combined with therapeutic proteins</span></font><sup><font
 +
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>[5]</span></font></sup><font size=3 face=Arial><span
 +
lang=EN-US style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>.</span></font><font
 +
size=3 face=Arial><span lang=EN style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'> The existing biocompatibility between bacterial
 +
cellulose and human cells has led to the use of the polymer as a matrix for the
 +
regeneration of organs and tissues such as cartilage and skin</span></font><sup><font
 +
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>[6]</span></font></sup><font size=3 face=Arial><span
 +
lang=EN-US style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>.</span></font></p>
  
    .sub_menu_option {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=5
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:16.0pt;line-height:150%;
      height: 40px;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l4"  style="text-decoration: none;"></a>PHASE 2 FUSION PROTEIN
      position: relative;
+
CBD-ELP-BMP2</span></font></b></p>
      text-align: left;
+
      text-indent: 20px;
+
      display: flex;
+
      background-color: #000;
+
      margin: auto auto;
+
      align-items: center;
+
      transition: 0.2s;
+
      color: #D5DBDB;
+
    }
+
  
    .sub_menu_option:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=4
      text-indent: 25px;
+
face=Arial><span lang=EN-US style='font-size:14.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l5"  style="text-decoration: none;"></a>LASTIN-LIKE POLYPEPTIDES</span></font></b></p>
    .ecuador_footer {
+
      width: 100%;
+
      height: 250px;
+
      position: absolute;
+
      left: 0px;
+
      top: 4345px;
+
      background-color: #212F3C;
+
    }
+
  
    .ecuador_footer_igem_logo {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 180px;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 180px;
+
font-family:"Arial",sans-serif'>Elastin-like polypeptides (ELP) are genetically
      position: absolute;
+
encodable artificial biopolymers. They are elastomeric proteins formed by a
      right: 80px;
+
repetitive pentapeptide of Val-Pro-Gly-Xaa-Gly sequence, Xaa can be any amino
      top: 35px;
+
acid except proline. <sup>[1]</sup>. </span></font></p>
      background-image: url('https://static.igem.org/mediawiki/2018/5/55/T--Ecuador--iGEM--Logo--Black.png');
+
      background-size: 100%;
+
      background-repeat: no-repeat;
+
      background-position: center;
+
    }
+
  
    .ecuador_footer_information_layout {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 75%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 80%;
+
font-family:"Arial",sans-serif'>ELPs are thermostable biopolymers whose
      position: absolute;
+
properties vary depending on the temperature, pH or ionic strength. They can
      left: 60px;
+
pass from a soluble state to an insoluble one and reversibly depending on their
      top: 15%;
+
transition temperature (Tt) <sup>[2]</sup>, at temperatures lower than the Tt
      display: flex;
+
ELPs are soluble, but insoluble when the temperature exceeds the Tt. This
    }
+
property is maintained even when they are fused with other proteins and has
 +
been used in protein purification. The amino acid residues that contain groups
 +
susceptible to ionization result in a polymer with a Tt regulated by changes in
 +
pH, in addition, the substitution of the Xaa residue allows ELP to be designed
 +
with a desired Tt<sup>[3]</sup>.  </span></font></p>
  
    .ecuador_footer_information_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 33.33%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 100%;
+
font-family:"Arial",sans-serif'>In biomedicine, ELPs have applications in the
      position: relative;
+
specific drug delivery, in tissue engineering and regenerative medicine. It has
    }
+
been possible to selectively transport antineoplastic drugs to pathologically
 +
changed tissues, allowing the polymer-drug conjugates to accumulate in the
 +
vicinity of a tumour, showing a lower toxicity compared to free-running drugs. <sup>[1]</sup>.
 +
</span></font></p>
  
    .ecuador_footer_information_title_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 25px;
+
font-family:"Arial",sans-serif'>In regenerative medicine, ELPs have been used
      position: relative;
+
as scaffolds in tissue regeneration, and have shown promising results in
      top: 0px;
+
treatments for articular cartilage damage, where a hydrogel made of ELP is
      text-align: center;
+
used, in which it effectively contributed to the production of a cartilage
      font-size: 20px;
+
matrix. Other studies show that ELPs conjugated with polymers such as
      font-weight: bold;
+
polyacrylic acid and polyethyleneimine can strongly influence the aggregation,
      color: #B2BABB;
+
morphology and differentiated function of hepatocytes in vitro, showing the
    }
+
ability to use ELP in the regeneration of liver tissue <sup>[1]</sup>. In
 +
addition, ELPs have shown promising results to be used in the engineering of
 +
ocular surface tissues, and in vascular grafts <sup>[4]</sup>.</span></font></p>
  
    .ecuador_follow_us_icons_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=4
      width: 50%;
+
face=Arial><span lang=EN-US style='font-size:14.0pt;line-height:150%;
      height: 60px;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l6"  style="text-decoration: none;"></a>SUPER FOLDER GREEN FLUORESCENT
      position: relative;
+
PROTEIN</span></font></b></p>
      top: 40px;
+
      margin: auto;
+
      display: flex;
+
    }
+
  
    .ecuador_follow_us_icon {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><img width=287
      width: 60px;
+
height=238 src="https://static.igem.org/mediawiki/2018/2/2d/T--Ecuador--bg--001.png" align=left hspace=15
      height: 60px;
+
alt="Proteina verde &#13;&#10;  &#13;&#10;"><font size=3 face=Arial><span
      position: relative;
+
lang=ES-EC style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'> </span></font><font
      margin: auto;
+
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif'>More complete variants of GFP are used as
 +
fusion markers and protein expression reporters, but fused proteins can reduce
 +
the yield, yield, and fluorescence of these GFPs.<sup>[1] </sup>They perform
 +
the process properly, when expressed alone or when it is fused to well-folded
 +
proteins; In addition, the resistance of GFP is dependent on the chemistry and
 +
thermal denaturation. In this project we will use a GFP super-folder, which is
 +
a variation of the green fluorescent protein (GFP). Frequently, wild-type GFP
 +
is misfolded when expressed in E. coli and when expressed as fusions with other
 +
proteins. Unlike this one, the GFP super-folder contains 'cycle-3' mutations
 +
and the 'enhanced GFP' mutations F64L and S65T<sup>[2]</sup>, giving it a
 +
better tolerance to circular permutation, greater resistance to chemical
 +
denaturing<sup>[3]</sup> and better folding kinetics. Therefore, it can be
 +
folded correctly even though the fused protein is not well folded. In 2006 it
 +
was evidenced through X-ray crystallographic structural analysis, the presence
 +
of a network of five-member ion pairs in the GFP superfolder, based on its S30R
 +
mutation; and thus improving its folding compared to the GFP reporter.</span></font></p>
  
 +
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
 +
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
  
    #facebook {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><img width=248
      background-image: url(https://static.igem.org/mediawiki/2018/4/42/T--Ecuador--Facebook.png);
+
height=201 src="https://static.igem.org/mediawiki/2018/6/64/T--Ecuador--bg--002.png" align=right hspace=15
      background-repeat: no-repeat;
+
alt="Proteina cafe &#13;&#10;  &#13;&#10;"><b><font size=4 face=Arial><span
      background-position: center;
+
lang=EN-US style='font-size:14.0pt;line-height:150%;font-family:"Arial",sans-serif;
      background-size: 80%;
+
font-weight:bold'><a name="l7"  style="text-decoration: none;"></a>BONE MORPHOGENETIC PROTEIN II</span></font></b></p>
      transition: 0.4s;
+
      border-radius: 5px;
+
    }
+
  
    #facebook:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-image: url(https://static.igem.org/mediawiki/2018/4/40/T--Ecuador--Facebook--White.png);
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      cursor: pointer;
+
font-family:"Arial",sans-serif'>The discovery of BMPs by Urist in 1965 has been
    }
+
a breakthrough in research that has been shown that the protein is able to
 +
stimulate bone production. Due to these properties, this protein is currently
 +
used in various fields such as Traumatology, Tissue Engineering and orthopedic
 +
surgery in which recombinant human BMP2 (rhBMP2) is used. The implantation of
 +
BMP2 in a collagen sponge induces the formation of new bone and can be used as
 +
a treatment for certain bone defects<sup>[4]</sup>. </span></font></p>
  
    #instagram {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      background-image: url(https://static.igem.org/mediawiki/2018/9/90/T--Ecuador--Instagram.png);
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      background-repeat: no-repeat;
+
font-family:"Arial",sans-serif'>Oral surgery has benefited in particular with
      background-position: center;
+
the commercialization of this protein, since the use of BMP2 in absorbable
      background-size: 80%;
+
collagen sponges has significantly reduced the costs of the interventions and
      transition: 0.4s;
+
the pain suffered by patients with degenerative disease of the lumbar
      border-radius: 5px;
+
discotheques.</span></font></p>
    }
+
  
    #instagram:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=5
      background-image: url(https://static.igem.org/mediawiki/2018/4/49/T--Ecuador--Instagram--White.png);
+
face=Arial><span lang=EN-US style='font-size:16.0pt;line-height:150%;
      cursor: pointer;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l8"></a>CELLULOSE-BINDING DOMAINS</span></font></b></p>
    }
+
  
    .ecuador_background_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 4000px;
+
font-family:"Arial",sans-serif'>Cellulose, the most abundant biopolymer and
      position: absolute;
+
biorenewable compound Earth, is a recalcitrant polysaccharide<sup>[1]</sup>.
      left: 0px;
+
Cellulolytic organisms are capable of degrading cellulose which involves
      top: 110px;
+
excretion of endo- and exo-glucanases as well as glucosidases. Structurally,
      background-color: #21618C;
+
these enzymes are modular, consisting of a catalytic domain and
    }
+
cellulose-binding domain (CBD), as well as possible ancillary domains<sup>[2]</sup>.
 +
Because of the modules play generally their respective role independently, the
 +
CBD has been studied to improve the cellulose degradation as well as to bind
 +
other functional proteins. It has been foun that CBD can be found at the
 +
N-terminal or at the C-terminal region of these enzymes<sup>[4]</sup>.</span></font></p>
  
    .ecuador_background_title_cotainer {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 70px;
+
font-family:"Arial",sans-serif'>In order to evaluate an N-terminal and a
      position: relative;
+
C-terminal CBD we chose the domain of <i><span style='font-style:italic'>Clostridium</span></i>
      top: 30px;
+
<i><span style='font-style:italic'>thermocellum</span></i>
      margin: auto;
+
cellulosome-scaffolding protein A (cipA) and the domain of <i><span
      color: #FFF;
+
style='font-style:italic'>Cellulomonas fimi</span></i> exoglucanase (Cex). We
      font-size: 32px;
+
used the CBDcipA because the high affinity among other CBDs reported by the
      display: flex;
+
Imperail College London team (2014).</span></font></p>
      justify-content: center;
+
      align-items: center;
+
      animation-name: slide-in;
+
      animation-duration: 1.5s;
+
    }
+
  
    .ecuador_background_sub_title_cotainer {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 50px;
+
font-family:"Arial",sans-serif'>The modules are joined by linkers that are
      position: relative;
+
variable in terms of length and amino acid composition. The length ranges from
      top: 30px;
+
a few to up to 150 amino acids whereas the sequences are rich in proline or/and
      margin: auto;
+
hydroxyamino acids<sup>[3]</sup>. Because of the synergistic activity between
      color: #FFF;
+
the catalytic and cellulose-binding domain is dependent of the length and/or
      font-size: 24px;
+
linker sequence, we have used their respective endogenous linkers<sup>[2]</sup>.  
      display: flex;
+
</span></font></p>
      justify-content: center;
+
      align-items: center;
+
      animation-name: fade-in;
+
      animation-duration: 4.5s;
+
    }
+
  
    .ecuador_background_text_container {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: auto;
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
      top: 30px;
+
      position: relative;
+
    }
+
  
    .ecuador_background_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><b><font size=5
      width: 50%;
+
face=Arial><span lang=EN-US style='font-size:16.0pt;line-height:150%;
      height: auto;
+
font-family:"Arial",sans-serif;font-weight:bold'><a name="l9"></a>References</span></font></b></p>
      position: relative;
+
      background-color: #21618C;
+
      border-radius: 20px;
+
      color: #FFF;
+
      text-align: justify;
+
      font-size: 17px;
+
      animation-name: fade-in;
+
      animation-duration: 4.5s;
+
    }
+
  
    .ecuador_background_centered_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 80%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: auto;
+
font-family:"Arial",sans-serif'>Ummatyotin, S., &amp; Manuspiya, H. (2014). A
      position: relative;
+
critical review on cellulose: From fundamental to an approach on sensor
      color: #FFF;
+
technology . </span></font><i><font size=3 face=Arial><span style='font-size:
      animation-name: fade-in;
+
12.0pt;line-height:150%;font-family:"Arial",sans-serif;font-style:italic'>Renewable
      animation-duration: 4.5s;
+
and Sustainable Energy Reviews</span></font></i><font size=3 face=Arial><span
      font-size: 13px;
+
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>,
      margin: auto;
+
402-409.</span></font></p>
      margin-top: 60px;
+
      text-align: justify;
+
    }
+
  
    .reference_box {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>Iguchi,
      height: auto;
+
M., Yamanaka, S., &amp; Budhiono, A. (2000). </span></font><font size=3
      position: relative;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      top: 120px;
+
font-family:"Arial",sans-serif'>Review bacterial cellulose-a masterpiece of
      animation-name: fade-in;
+
nature's art . </span></font><i><font size=3 face=Arial><span style='font-size:
      animation-duration: 4.5s;
+
12.0pt;line-height:150%;font-family:"Arial",sans-serif;font-style:italic'>Journal
      color: #E5E7E9;
+
of material science</span></font></i><font size=3 face=Arial><span
      background-color: #17202A;
+
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>,
      padding-top: 15px;
+
261-270.</span></font></p>
      padding-bottom: 15px;
+
    }
+
  
    .reference_title {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 25px;
+
font-family:"Arial",sans-serif'>Foresti, L., Vazquez, A., &amp; Boury, B.
      position: relative;
+
(2016). Appiation of bacterial cellulose as precusor of carbon and composites
      text-indent: 12%;
+
with metal oxide, metal sulfide and metal nanoparticles. </span></font><i><font
      font-size: 18px
+
size=3 face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:
    }
+
"Arial",sans-serif;font-style:italic'>Carbohydrate polymers</span></font></i><font
 +
size=3 face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:
 +
"Arial",sans-serif'>.</span></font></p>
  
    .reference_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 80%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: auto;
+
font-family:"Arial",sans-serif'>MAneerung, T., Tokura, S., Rujiracanit, &amp;
      justify-content: center;
+
R. (2007). Impregnation of silver nanoparticles into bacterial cellulose for
      display: flex;
+
antimicrobial wound dressing. </span></font><i><font size=3 face=Arial><span
      align-items: center;
+
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif;
      text-align: justify;
+
font-style:italic'>Carbohydrate polymers</span></font></i><font size=3
      font-variant: small-caps;
+
face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>,
      margin: auto;
+
43-51.</span></font></p>
      font-size: 16px;
+
    }
+
  
    .bold_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      font-weight: bold;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      font-size: 17px;
+
font-family:"Arial",sans-serif'>Helenius, C., Backhdal, H., Bodin, A.,
      color: #FFF !important;
+
Nannmark, U., Gatenholm, P., Risberg, &amp; B. (2005). </span></font><font
    }
+
size=3 face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:
 +
"Arial",sans-serif'>In vivo biocompatibility of bacterial cellulose. <i><span
 +
style='font-style:italic'>Wiley InterScience</span></i>, 431-438.</span></font></p>
  
    .ecuador_background_separator_1 {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 140px;
+
font-family:"Arial",sans-serif'>Backdahl, H., Helenius, G., Bodin, A.,
    }
+
Naanmmark, U., Johansson, R., Risberg, B., &amp; Gatenholm, P. (2006).
 +
Mechanical properties of bacterial cellulose and interactions with smooth
 +
muscle cells. </span></font><i><font size=3 face=Arial><span style='font-size:
 +
12.0pt;line-height:150%;font-family:"Arial",sans-serif;font-style:italic'>Biomaterials</span></font></i><font
 +
size=3 face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:
 +
"Arial",sans-serif'>, 2141-2149.</span></font></p>
  
    .ecuador_background_separator_2 {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 100%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 90px;
+
font-family:"Arial",sans-serif;background:white'>KOWALCZYK, Tomasz, et al.
    }
+
Elastin-like polypeptides as a promising family of genetically-engineered
 +
protein based polymers.&nbsp;<i><span style='font-style:italic'>World Journal
 +
of Microbiology and Biotechnology</span></i>, 2014, vol. 30, no 8, p.
 +
2141-2152.</span></font></p>
  
    .ecuador_background_scroll_container{
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 80px;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 40px;
+
font-family:"Arial",sans-serif;background:white'>PARK, Ji-Eun; WON, Jong-In.
      position: relative;
+
Thermal behaviors of elastin-like polypeptides (ELPs) according to their
      margin: auto;
+
physical properties and environmental conditions.&nbsp;<i><span
      top: -15px;
+
style='font-style:italic'>Biotechnology and Bioprocess Engineering</span></i>,
      left: 42%;
+
2009, vol. 14, no 5, p. 662.</span></font></p>
      z-index: 10;
+
      display: flex;
+
    }
+
  
    .ecuador_background_scroll_down_icon_conatiner {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 40px;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 40px;
+
font-family:"Arial",sans-serif;background:white'>MCMILLAN, R. Andrew;
      position: relative;
+
CONTICELLO, Vincent P. Synthesis and characterization of elastin-mimetic
      margin: auto;
+
protein gels derived from a well-defined polypeptide precursor.&nbsp;<i><span
      background-image: url(https://static.igem.org/mediawiki/2018/7/71/T--Ecuador--Scroll--Down--White.png);
+
style='font-style:italic'>Macromolecules</span></i>, 2000, vol. 33, no 13, p.
      background-position: bottom;
+
4809-4821.</span></font></p>
      background-repeat: no-repeat;
+
      background-size: 120%;
+
      transition: 0.8s;
+
      animation-name: fade-in;
+
      animation-duration: 2.5s;
+
      top: 5px;
+
    }
+
  
    .ecuador_background_scroll_down_icon_conatiner:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      cursor: pointer;
+
face=Arial><span lang=ES-EC style='font-size:12.0pt;line-height:150%;
      background-position: top;
+
font-family:"Arial",sans-serif;background:white'>MARTÍNEZ-OSORIO, Hernán, et
      transition: 0.4s;
+
al. </span></font><font size=3 face=Arial><span lang=EN-US style='font-size:
      opacity: 0.6;
+
12.0pt;line-height:150%;font-family:"Arial",sans-serif;background:white'>Genetically
    }
+
engineered elastin-like polymer as a substratum to culture cells from the
 +
ocular surface.&nbsp;<i><span style='font-style:italic'>Current eye research</span></i>,
 +
2009, vol. 34, no 1, p. 48-56.</span></font></p>
  
    .ecuador_background_scroll_up_icon_conatiner {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      width: 40px;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      height: 40px;
+
font-family:"Arial",sans-serif'>Guan, H., Gurau, G. &amp; Rogers, R. (2012).
      position: relative;
+
Ionic liquid processing of cellulose. <i><span style='font-style:italic'>Chemical
      margin: auto;
+
Society Reviews</span></i>. Issue 4, 2012</span></font></p>
      background-position: top;
+
      background-image: url(https://static.igem.org/mediawiki/2018/b/b8/T--Ecuador--Scroll--Up--White.png);
+
      background-repeat: no-repeat;
+
      background-size: 120%;
+
      transition: 0.8s;
+
      animation-name: fade-in;
+
      animation-duration: 2.5s;
+
      top: -5px;
+
    }
+
  
    .ecuador_background_scroll_up_icon_conatiner:hover {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      cursor: pointer;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      background-position: bottom;
+
font-family:"Arial",sans-serif'>Poon, D., Withers, Stephen., and McIntosh, L.
      transition: 0.4s;
+
(2006). Direct demonstration of the flexibility of the glycosylated
      opacity: 0.6;
+
proline-threonine linker in the Cellulomonas fimi Xylanase Cex through NMR
    }
+
spectroscopic analysis. <i><span style='font-style:italic'>The Journal of
 +
Biological Chemistry </span></i><font color=black><span style='color:black;
 +
background:white'>282(3):2091-100.</span></font></span></font></p>
  
    #bacterial_cellulose_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      left: 43%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif'>Gilkes, N., Henrissat, B., Kilburn, D., Miller,
 +
R. &amp; Warren, R. (1991). Domains in microbial beta-1, 4-glycanases: sequence
 +
conservation, function, and enzyme families. <i><span style='font-style:italic'>Microbiology
 +
Reviews</span></i>. 55, 303–315</span></font></p>
  
    #elastin_like_polypeptides_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      left: 7%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif'>Zhang, M., Wu, Sheng-Cheng., Zhou, W. &amp; Xu,
 +
B. (2012). Imaging and Measuring Single-Molecule Interaction between a
 +
Carbohydrate-Binding Module and Natural Plant Cell Wall Cellulose. <i><span
 +
style='font-style:italic'>The Journal of Physical Chemistry</span></i> 116,
 +
9949&#8722;9956</span></font></p>
  
    #green_fluorescent_protein_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      left: 43%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif'>Schaerli, Y., Munteanu, A., Gili, M.,
 +
Cotterell, J., Sharpe, J., &amp; Isalan, M. (2014). A unified design space of
 +
synthetic stripe-forming networks.&nbsp;Nature communications,&nbsp;5, 4905.</span></font></p>
  
    #bone_morphogenetic_protein_ii_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      left: 7%;
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
    }
+
font-family:"Arial",sans-serif'>Pédelacq, J. D., Cabantous, S., Tran, T.,
 +
Terwilliger, T. C., &amp; Waldo, G. S. (2006). Engineering and characterization
 +
of a superfolder green fluorescent protein.&nbsp;Nature
 +
biotechnology,&nbsp;24(1), 79.</span></font></p>
  
    #cellulose_binding_domains_text {
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
      left: 43%;
+
face=Arial><span style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>Tanenbaum,
    }
+
M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., &amp; Vale, R. D. (2014). </span></font><font
 +
size=3 face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>A protein-tagging system for signal
 +
amplification in gene expression and fluorescence imaging.&nbsp;</span></font><font
 +
size=3 face=Arial><span lang=ES-EC style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>Cell,&nbsp;159(3), 635-646.</span></font></p>
  
  </style>
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
 +
face=Arial><span lang=ES-EC style='font-size:12.0pt;line-height:150%;
 +
font-family:"Arial",sans-serif'>Francisca Pulido, J. G. (10 de 12 de 2013).
 +
Actualidad Médica . </span></font><font size=3 face=Arial><span lang=EN-US
 +
style='font-size:12.0pt;line-height:150%;font-family:"Arial",sans-serif'>Obtenido
 +
de BMP-2 in Traumatology. Advances in Tissue Engineering: <a
 +
href="https://www.actualidadmedica.es/archivo/2013/790/rev01.html">https://www.actualidadmedica.es/archivo/2013/790/rev01.html</a></span></font></p>
  
  <div class="ecuador_menu">
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
    <a href="https://2018.igem.org/Team:Ecuador">
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      <div class="ecuador_home">
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
        iGEM ECUADOR
+
      </div>
+
    </a>
+
    <div class="menu_options_container">
+
      <div id="project" class="menu_option">
+
        <a class="ecuador_href_text" href="https://2018.igem.org/Team:Ecuador/Description">PROJECT</a>
+
        <div class="menu_sub_options_container">
+
          <div class="sub_menu_option">
+
            MODELING
+
          </div>
+
          <div class="sub_menu_option">
+
            DESIGN
+
          </div>
+
          <a class="ecuador_href_sub_text" href="https://2018.igem.org/Team:Ecuador/Background">
+
            <div class="sub_menu_option">
+
              BACKGROUND
+
            </div>
+
          </a>
+
        </div>
+
      </div>
+
      <div id="people" class="menu_option">
+
        PEOPLE
+
        <div class="menu_sub_options_container">
+
          <div class="sub_menu_option">
+
            SPONSIRING
+
          </div>
+
          <div class="sub_menu_option">
+
            ATTRIBUTIONS
+
          </div>
+
          <div class="sub_menu_option">
+
            TEAM
+
          </div>
+
        </div>
+
      </div>
+
      <div id="notebook" class="menu_option">
+
        NOTEBOOK
+
        <div class="menu_sub_options_container">
+
          <div class="sub_menu_option">
+
            LAB BOOK
+
          </div>
+
          <div class="sub_menu_option">
+
            PROTOCOLS
+
          </div>
+
        </div>
+
      </div>
+
      <div id="human_practice" class="menu_option">
+
        HUMAN PRACTICE
+
        <div class="menu_sub_options_container">
+
          <div class="sub_menu_option">
+
            COLLABORATIONS
+
          </div>
+
        </div>
+
      </div>
+
      <div id="parts" class="menu_option">
+
        PARTS
+
        <div class="menu_sub_options_container">
+
          <div class="sub_menu_option">
+
            LIST
+
          </div>
+
          <div class="sub_menu_option">
+
            COMPOSITE
+
          </div>
+
          <div class="sub_menu_option">
+
            BASIC
+
          </div>
+
        </div>
+
      </div>
+
      <div id="safety" class="menu_option">
+
        SAFETY
+
      </div>
+
    </div>
+
  </div>
+
  
  <div class="ecuador_background_container">
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
    <div class="ecuador_background_title_cotainer">
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      PROJECT BACKGROUND
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
    </div>
+
    <div id="bacterial_cellulose" class="ecuador_background_sub_title_cotainer">
+
      BACTERIAL CELLULOSE
+
    </div>
+
    <div class="ecuador_background_scroll_container">
+
      <div onclick="ELPScroll()" class="ecuador_background_scroll_down_icon_conatiner">
+
  
      </div>
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
    </div>
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
    <div class="ecuador_background_text_container">
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
      <div id="bacterial_cellulose_text" class="ecuador_background_text">
+
        Cellulose was the most common biopolymer in the world. The primary form in which the material is found is lignocellulotic in trees, however there are other sources such as bacterial cellulose [1].This was first described by Luis Pasteur in the previous century and reported for the first time its use in a Philippine dessert called coconut cream, however, it was not until 1886 when it was reported as a type of cellulose in an acetic fermentation, after being observed as a floating film in a culture medium[2]. In recent years, several studies have been carried out on the usefulness of bacterial cellulose due to its high degree of purity and its simpler structure than that obtained from plants, in addition to the speed of polymer formation, reducing costs and environmental impact in the  purification process to eliminate the lignin and other impurities of the material to be applied in the industries[3].
+
        <br/><br/>
+
        Bacterial cellulose has been used mainly in the paper industry, in the food for the realization of various desserts and strong dishes and as a material for garment development, due to its great flexibility, it is also impregnated with several nanoparticles to give antimicrobial, antifungal capacities[4]. Its ability to be combined with other proteins gives it the advantage to create new polymers with other desired properties such as bioplastics and drug administrators when combined with therapeutic proteins[5]. The existing biocompatibility between bacterial cellulose and human cells has led to the use of the polymer as a matrix for the regeneration of organs and tissues such as cartilage and skin[6].
+
      </div>
+
    </div>
+
    <div class="reference_box">
+
      <div class="reference_title">
+
        References
+
      </div>
+
      <div class="reference_text">
+
          1. Ummatyotin, S., & Manuspiya, H. (2014). A critical review on cellulose: From fundamental to an approach on sensor technology . Renewable and Sustainable Energy Reviews, 402-409.<br/>
+
          2. Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Review bacterial cellulose-a masterpiece of nature's art . Journal of material science, 261-270.<br/>
+
          3. Foresti, L., Vazquez, A., & Boury, B. (2016). Appiation of bacterial cellulose as precusor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles. Carbohydrate polymers.<br/>
+
          4. MAneerung, T., Tokura, S., Rujiracanit, & R. (2007). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate polymers, 43-51.<br/>
+
          5. Helenius, C., Backhdal, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, & B. (2005). In vivo biocompatibility of bacterial cellulose. Wiley InterScience, 431-438.<br/>
+
          6. Backdahl, H., Helenius, G., Bodin, A., Naanmmark, U., Johansson, R., Risberg, B., & Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 2141-2149.<br/>
+
      </div>
+
    </div>
+
    <div class="ecuador_background_separator_1">
+
  
    </div>
+
<p class=MsoNormal style='text-align:justify;line-height:150%'><font size=3
    <div id="elastin_like_polypeptides" class="ecuador_background_sub_title_cotainer">
+
face=Arial><span lang=EN-US style='font-size:12.0pt;line-height:150%;
      ELASTIN-LIKE POLYPEPTIDES
+
font-family:"Arial",sans-serif'>&nbsp;</span></font></p>
    </div>
+
    <div class="ecuador_background_scroll_container">
+
      <div onclick="BACScroll()" class="ecuador_background_scroll_up_icon_conatiner">
+
  
      </div>
+
</div>
      <div onclick="GFPScroll()" class="ecuador_background_scroll_down_icon_conatiner">
+
  
      </div>
 
    </div>
 
    <div class="ecuador_background_text_container">
 
      <div id="elastin_like_polypeptides_text" class="ecuador_background_text">
 
        Elastin-like polypeptides (ELP) are genetically encodable artificial biopolymers. They are elastomeric proteins formed by a repetitive pentapeptide of Val-Pro-Gly-Xaa-Gly sequence, Xaa can be any amino acid except proline [1].
 
        <br/><br/>
 
        ELPs are thermostable biopolymers whose properties vary depending on the temperature, pH or ionic strength. They can pass from a soluble state to an insoluble one and reversibly depending on their transition temperature (Tt) [2], at temperatures lower than the Tt ELPs are soluble, but insoluble when the temperature exceeds the Tt. This property is maintained even when they are fused with other proteins and has been used in protein purification. The amino acid residues that contain groups susceptible to ionization result in a polymer with a Tt regulated by changes in pH, in addition, the substitution of the Xaa residue allows ELP to be designed with a desired Tt[3].
 
        <br/><br/>
 
        In biomedicine, ELPs have applications in the specific drug delivery, in tissue engineering and regenerative medicine. It has been possible to selectively transport antineoplastic drugs to pathologically changed tissues, allowing the polymer-drug conjugates to accumulate in the vicinity of a tumour, showing a lower toxicity compared to free-running drugs. [1].
 
        <br/><br/>
 
        In regenerative medicine, ELPs have been used as scaffolds in tissue regeneration, and have shown promising results in treatments for articular cartilage damage, where a hydrogel made of ELP is used, in which it effectively contributed to the production of a cartilage matrix. Other studies show that ELPs conjugated with polymers such as polyacrylic acid and polyethyleneimine can strongly influence the aggregation, morphology and differentiated function of hepatocytes in vitro, showing the ability to use ELP in the regeneration of liver tissue [1]. In addition, ELPs have shown promising results to be used in the engineering of ocular surface tissues, and in vascular grafts [4].
 
      </div>
 
    </div>
 
    <div class="reference_box">
 
      <div class="reference_title">
 
        References
 
      </div>
 
      <div class="reference_text">
 
        1. KOWALCZYK, Tomasz, et al. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World Journal of Microbiology and Biotechnology, 2014, vol. 30, no 8, p. 2141-2152.<br/>
 
        2. PARK, Ji-Eun; WON, Jong-In. Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnology and Bioprocess Engineering, 2009, vol. 14, no 5, p. 662.<br/>
 
        3. MCMILLAN, R. Andrew; CONTICELLO, Vincent P. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules, 2000, vol. 33, no 13, p. 4809-4821.<br/>
 
        4. MARTÍNEZ-OSORIO, Hernán, et al. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Current eye research, 2009, vol. 34, no 1, p. 48-56.<br/>
 
      </div>
 
    </div>
 
    <div class="ecuador_background_separator_1">
 
 
    </div>
 
    <div id="green_fluorescent_protein" class="ecuador_background_sub_title_cotainer">
 
      GREEN FLUORESCENT PROTEIN
 
    </div>
 
    <div class="ecuador_background_scroll_container">
 
      <div onclick="ELPScroll()" class="ecuador_background_scroll_up_icon_conatiner">
 
 
      </div>
 
      <div onclick="BMPScroll()" class="ecuador_background_scroll_down_icon_conatiner">
 
 
      </div>
 
    </div>
 
    <div class="ecuador_background_text_container">
 
      <div id="green_fluorescent_protein_text" class="ecuador_background_text">
 
        More complete variants of GFP are used as fusion markers and protein expression reporters, but fused proteins can reduce the yield, yield, and fluorescence of these GFPs.[1] They perform the process properly, when expressed alone or when it is fused to well-folded proteins; In addition, the resistance of GFP is dependent on the chemistry and thermal denaturation. In this project we will use a GFP super-folder, which is a variation of the green fluorescent protein (GFP). Frequently, wild-type GFP is misfolded when expressed in E. coli and when expressed as fusions with other proteins. Unlike this one, the GFP super-folder contains 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T[2], giving it a better tolerance to circular permutation, greater resistance to chemical denaturing[3] and better folding kinetics. Therefore, it can be folded correctly even though the fused protein is not well folded. In 2006 it was evidenced through X-ray crystallographic structural analysis, the presence of a network of five-member ion pairs in the GFP superfolder, based on its S30R mutation; and thus improving its folding compared to the GFP reporter.
 
      </div>
 
    </div>
 
    <div class="ecuador_background_separator_2">
 
 
    </div>
 
    <div id="bone_morphogenetic_protein_ii" class="ecuador_background_sub_title_cotainer">
 
      BONE MORPHOGENETIC PROTEIN II
 
    </div>
 
    <div class="ecuador_background_scroll_container">
 
      <div onclick="GFPScroll()" class="ecuador_background_scroll_up_icon_conatiner">
 
 
      </div>
 
      <div onclick="CBDScroll()" class="ecuador_background_scroll_down_icon_conatiner">
 
 
      </div>
 
    </div>
 
    <div class="ecuador_background_text_container">
 
      <div id="bone_morphogenetic_protein_ii_text" class="ecuador_background_text">
 
        The discovery of BMPs by Urist in 1965 has been a breakthrough in research that has been shown that the protein is able to stimulate bone production. Due to these properties, this protein is currently used in various fields such as Traumatology, Tissue Engineering and orthopedic surgery in which recombinant human BMP2 (rhBMP2) is used. The implantation of BMP2 in a collagen sponge induces the formation of new bone and can be used as a treatment for certain bone defects.
 
        <br/><br/>
 
        Oral surgery has benefited in particular with the commercialization of this protein, since the use of BMP2 in absorbable collagen sponges has significantly reduced the costs of the interventions and the pain suffered by patients with degenerative disease of the lumbar discotheques.
 
      </div>
 
    </div>
 
    <div class="reference_box">
 
      <div class="reference_title">
 
        References
 
      </div>
 
      <div class="reference_text">
 
        1.  Schaerli, Y., Munteanu, A., Gili, M., Cotterell, J., Sharpe, J., & Isalan, M. (2014). A unified design space of synthetic stripe-forming networks. Nature communications, 5, 4905. <br/>
 
        2.  Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature biotechnology, 24(1), 79. <br/>
 
        3.  Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., & Vale, R. D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3), 635-646. <br/>
 
        4.  Francisca Pulido, J. G. (10 de 12 de 2013). Actualidad Médica . Obtenido de BMP-2 in Traumatology. Advances in Tissue Engineering: https://www.actualidadmedica.es/archivo/2013/790/rev01.html <br/>
 
      </div>
 
    </div>
 
 
    <div class="ecuador_background_separator_1">
 
 
    </div>
 
    <div id="cellulose_binding_domains" class="ecuador_background_sub_title_cotainer">
 
      CELLULOSE-BINDING DOMAINS
 
    </div>
 
    <div class="ecuador_background_scroll_container">
 
      <div onclick="BMPScroll()" class="ecuador_background_scroll_up_icon_conatiner">
 
 
      </div>
 
    </div>
 
    <div class="ecuador_background_text_container">
 
      <div id="cellulose_binding_domains_text" class="ecuador_background_text">
 
        Cellulose, the most abundant biopolymer and biorenewable compound Earth, is a recalcitrant polysaccharide[1]. Cellulolytic organisms are capable of degrading cellulose which involves excretion of endo- and exo-glucanases as well as glucosidases. Structurally, these enzymes are modular, consisting of a catalytic domain and cellulose-binding domain (CBD), as well as possible ancillary domains[2].  Because of the modules play generally their respective role independently, the CBD has been studied to improve the cellulose degradation as well as to bind other functional proteins. It has been foun that CBD can be found at the N-terminal or at the C-terminal region of these enzymes[4].
 
        <br/><br/>
 
        In order to evaluate an N-terminal and a C-terminal CBD we chose the domain of Clostridium thermocellum cellulosome-scaffolding protein A (cipA) and the domain of Cellulomonas fimi exoglucanase (Cex). We used the CBDcipA because the high affinity among other CBDs reported by the Imperail College London team (2014).
 
        <br/><br/>
 
        The modules are joined by linkers that are variable in terms of length and amino acid composition. The length ranges from a few to up to 150 amino acids whereas the sequences are rich in proline or/and hydroxyamino acids[3]. Because of the synergistic activity between the catalytic and cellulose-binding domain is dependent of the length and/or linker sequence, we have used their respective endogenous linkers[2].
 
      </div>
 
      <div class="ecuador_background_centered_text">
 
        <p class="bold_text">Celullose-binding domain of C. thermocellum cellulosome-scaffolding protein A</p>
 
        Cellulose-binding domain of Clostridium thermocellum cellulose-scaffolding protein A (cip A) in Standard 25 (Freiburg).
 
        <br/> <br/>
 
        <p class="bold_text">Usage and Biology</p>
 
        The cipA CBD of C. thermocellum is an N-terminal domain belonging to the family IIIa of CBDs. It is capable to bind reversibly to crystalline cellulose[5]. This has been used by the Imperial College London (BBa_K1321014), Concordia (BBa_K1830003), Stanford (BBa_K1692027), INSA-Lyon and Edinburgh (BBa_K1615111). The sequence of cipA CBD and its endogenous C-terminal linker were taken from the study of Yaniv et al. (2013)[6].
 
        The domain and the linker rich in proline-threonine consist of 115 and 18 amino acids respectively. Both of them were codon optimized for E. coli.
 
 
        <br/> <br/>
 
        <p class="bold_text">Cellulose-binding domain of C. fimi exoglucanase</p>
 
        Cellulose-binding domain of Cellulomonas fimi exoglucanase (cip A) in Standard 25 (Freiburg).
 
        <br/> <br/>
 
        <p class="bold_text">Usage and Biology</p>
 
        The Cex CBD of C. fimi is a C-terminal domain belonging to the family II of CBDs. It binds preferentially to crystalline cellulose in reversible manner[2]. This has been used by the Bielefeld, Imperial College London (BBa_K1321003). The domain and the N-terminal linker rich in proline-threonine contain 110 and 20 amino acids respectively. Both of them were codon optimized for E. coli.
 
 
        <p class="bold_text">ELASTIN-LIKE POLYPEPTIDE V40C2</p>
 
        Elastin-like polypeptide V40C2 (ELP) in Standard 25 (Freiburg).
 
        <br/> <br/>
 
        <p class="bold_text">Usage and Biology</p>
 
        What makes ELPs interesting amino acidics sequences is the transition temperature by which protein purification is easier and cheaper compared to other alternatives as well as the elastic properties that can be transferred to materials such as cellulose[7].
 
        Because of our perspective is a functionalized bacterial cellulose with therapeutical properties such as bone regeneration (BMP2 protein), we chose the V40C2 ELP that was tested by  McCarthy et al. (2016) [8]. The transition temperature of the V40C2 ELP and the protein fusion BMP2-V40C2 were 37℃ and 32℃ respectively. Therefore, this characteristic is useful for our proposal.
 
        The V40C2 ELP consist of a 250 amino acids with a molecular weight of 20 kDa[8].
 
      </div>
 
    </div>
 
    <div class="reference_box">
 
      <div class="reference_title">
 
        References
 
      </div>
 
      <div class="reference_text">
 
        1. Guan, H., Gurau, G. & Rogers, R. (2012). Ionic liquid processing of cellulose. Chemical Society Reviews. Issue 4, 2012<br/>
 
        2. Poon, D., Withers, Stephen., and McIntosh, L. (2006). Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi Xylanase Cex through NMR spectroscopic analysis. The Journal of Biological Chemistry 282(3):2091-100.<br/>
 
        3. Gilkes, N., Henrissat, B., Kilburn, D., Miller, R. & Warren, R. (1991). Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiology Reviews. 55, 303–315<br/>
 
        4. Zhang, M., Wu, Sheng-Cheng., Zhou, W. & Xu, B. (2012). Imaging and Measuring Single-Molecule Interaction between a Carbohydrate-Binding Module and Natural Plant Cell Wall Cellulose. The Journal of Physical Chemistry 116, 9949−9956<br/>
 
        5. Shimon, L. J., Belaich, A., Belaich, J. P., Bayer, E. A., Lamed, R., Shoham, Y., & Frolow, F. (2000). Structure of a family IIIa scaffoldin CBD from the cellulosome of Clostridium cellulolyticum at 2.2 Å resolution. Acta Crystallographica Section D: Biological Crystallography, 56(12), 1560-1568.<br/>
 
        6. Yaniv, O., Morag, E., Borovok, I., Bayer, E., Lamed, R., Frolow, F. & Shimond, L. (2013). Structure of a family 3a carbohydrate-binding module from the cellulosomal scaffoldin CipA of Clostridium thermocellum with flanking linkers: implications for cellulosome structure. Acta crystallographica F69, 733–737<br/>
 
        7. Fang, W., Paananen, A., Vitikainen, M., Koskela, S., Westerholm-Parvinen, A., Joensuu, J., Landowski, C., Penttilä, M., Linder, M. & Laaksonen, P. (2017) Elastic and pH responsive hybrid interfaces created with engineered resilin and nanocellulose. Biomacromolecules<br/>
 
        8. McCarthy, B., Yuan, Y. & Koria, P. (2016). Elastin-Like-Polypeptide Based Fusion Proteins for Osteogenic Factor Delivery in Bone Healing. Biotechnology Progress 32, 1029-1037<br/>
 
      </div>
 
    </div>
 
  </div>
 
 
  <div class="ecuador_footer">
 
    <div class="ecuador_footer_igem_logo">
 
    </div>
 
    <div class="ecuador_footer_information_layout">
 
      <div class="ecuador_footer_information_container">
 
        <div class="ecuador_footer_information_title_container">
 
          SPONSORS
 
        </div>
 
      </div>
 
      <div class="ecuador_footer_information_container">
 
        <div class="ecuador_footer_information_title_container">
 
          FOLLOW US
 
          <div class="ecuador_follow_us_icons_container">
 
            <div id="facebook" class="ecuador_follow_us_icon">
 
 
            </div>
 
            <div id="instagram" class="ecuador_follow_us_icon">
 
 
            </div>
 
          </div>
 
        </div>
 
      </div>
 
      <div class="ecuador_footer_information_container">
 
        <div class="ecuador_footer_information_title_container">
 
          CONTACT US
 
        </div>
 
      </div>
 
    </div>
 
  </div>
 
  
 +
</div>
 +
</div>
 +
</div>
 +
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
 
<script>
 
<script>
  function BACScroll() {
+
$(document).ready(function(){
    var divScrollY = document.getElementById("bacterial_cellulose").offsetTop;
+
$("#type").mouseenter(function(){
    console.log(divScrollY);
+
    $(".textdis").show();
    window.scroll({
+
});
      top: divScrollY - 40,
+
$("#label-neg-c").mouseenter(function(){
      left: 0,
+
    $(".loc-neg-c").show();
      behavior: 'smooth'
+
});
    });
+
$("#label-pos-c").mouseenter(function(){
  }
+
    $(".loc-pos-c").show();
  function ELPScroll() {
+
});
    var divScrollY = document.getElementById("elastin_like_polypeptides").offsetTop;
+
$("#label-td1").mouseenter(function(){
    console.log(divScrollY);
+
    $(".loc-td1").show();
    window.scroll({
+
});
      top: divScrollY - 40,
+
$("#label-td2").mouseenter(function(){
      left: 0,
+
    $(".loc-td2").show();
      behavior: 'smooth'
+
});
    });
+
$("#label-td3").mouseenter(function(){
  }
+
    $(".loc-td3").show();
  function GFPScroll() {
+
});
    var divScrollY = document.getElementById("green_fluorescent_protein").offsetTop;
+
$("#label-td4").mouseenter(function(){
    console.log(divScrollY);
+
    $(".loc-td4").show();
    window.scroll({
+
});
      top: divScrollY - 40,
+
$("#label-td5").mouseenter(function(){
      left: 0,
+
    $(".loc-td5").show();
      behavior: 'smooth'
+
});
    });
+
$("#label-td6").mouseenter(function(){
  }
+
    $(".loc-td6").show();
  function BMPScroll() {
+
});
    var divScrollY = document.getElementById("bone_morphogenetic_protein_ii").offsetTop;
+
    console.log(divScrollY);
+
    window.scroll({
+
$("#type").mouseleave(function(){
      top: divScrollY - 40,
+
$(".textdis").hide();
      left: 0,
+
});
      behavior: 'smooth'
+
$("#label-neg-c").mouseleave(function(){
    });
+
$(".loc-neg-c").hide();
  }
+
});
  function CBDScroll() {
+
$("#label-pos-c").mouseleave(function(){
    var divScrollY = document.getElementById("cellulose_binding_domains").offsetTop;
+
$(".loc-pos-c").hide();
    console.log(divScrollY);
+
});
    window.scroll({
+
$("#label-td1").mouseleave(function(){
      top: divScrollY - 40,
+
$(".loc-td1").hide();
      left: 0,
+
});
      behavior: 'smooth'
+
$("#label-td2").mouseleave(function(){
    });
+
$(".loc-td2").hide();
  }
+
});
 +
$("#label-td3").mouseleave(function(){
 +
$(".loc-td3").hide();
 +
});
 +
$("#label-td4").mouseleave(function(){
 +
$(".loc-td4").hide();
 +
});
 +
$("#label-td5").mouseleave(function(){
 +
$(".loc-td5").hide();
 +
});
 +
$("#label-td6").mouseleave(function(){
 +
$(".loc-td6").hide();
 +
});
 +
 +
 +
});
 +
 +
 +
 
</script>
 
</script>
 
 
</html>
 
</html>
 +
{{Ecuador/footer}}

Latest revision as of 04:08, 19 November 2018

C-lastin, Interlab

PHASE 1

BACTERIAL CELLULOSE

Cellulose was the most common biopolymer in the world. The primary form in which the material is found is lignocellulotic in trees, however there are other sources such as bacterial cellulose [1].This was first described by Luis Pasteur in the previous century and reported for the first time its use in a Philippine dessert called coconut cream, however, it was not until 1886 when it was reported as a type of cellulose in an acetic fermentation, after being observed as a floating film in a culture medium[2]. In recent years, several studies have been carried out on the usefulness of bacterial cellulose due to its high degree of purity and its simpler structure than that obtained from plants, in addition to the speed of polymer formation, reducing costs and environmental impact in the purification process to eliminate the lignin and other impurities of the material to be applied in the industries[3].

Bacterial cellulose has been used mainly in the paper industry, in the food for the realization of various desserts and strong dishes and as a material for garment development, due to its great flexibility, it is also impregnated with several nanoparticles to give antimicrobial, antifungal capacities[4]. Its ability to be combined with other proteins gives it the advantage to create new polymers with other desired properties such as bioplastics and drug administrators when combined with therapeutic proteins[5]. The existing biocompatibility between bacterial cellulose and human cells has led to the use of the polymer as a matrix for the regeneration of organs and tissues such as cartilage and skin[6].

PHASE 2 FUSION PROTEIN CBD-ELP-BMP2

LASTIN-LIKE POLYPEPTIDES

Elastin-like polypeptides (ELP) are genetically encodable artificial biopolymers. They are elastomeric proteins formed by a repetitive pentapeptide of Val-Pro-Gly-Xaa-Gly sequence, Xaa can be any amino acid except proline. [1].

ELPs are thermostable biopolymers whose properties vary depending on the temperature, pH or ionic strength. They can pass from a soluble state to an insoluble one and reversibly depending on their transition temperature (Tt) [2], at temperatures lower than the Tt ELPs are soluble, but insoluble when the temperature exceeds the Tt. This property is maintained even when they are fused with other proteins and has been used in protein purification. The amino acid residues that contain groups susceptible to ionization result in a polymer with a Tt regulated by changes in pH, in addition, the substitution of the Xaa residue allows ELP to be designed with a desired Tt[3].

In biomedicine, ELPs have applications in the specific drug delivery, in tissue engineering and regenerative medicine. It has been possible to selectively transport antineoplastic drugs to pathologically changed tissues, allowing the polymer-drug conjugates to accumulate in the vicinity of a tumour, showing a lower toxicity compared to free-running drugs. [1].

In regenerative medicine, ELPs have been used as scaffolds in tissue regeneration, and have shown promising results in treatments for articular cartilage damage, where a hydrogel made of ELP is used, in which it effectively contributed to the production of a cartilage matrix. Other studies show that ELPs conjugated with polymers such as polyacrylic acid and polyethyleneimine can strongly influence the aggregation, morphology and differentiated function of hepatocytes in vitro, showing the ability to use ELP in the regeneration of liver tissue [1]. In addition, ELPs have shown promising results to be used in the engineering of ocular surface tissues, and in vascular grafts [4].

SUPER FOLDER GREEN FLUORESCENT PROTEIN

Proteina verde 
  
More complete variants of GFP are used as fusion markers and protein expression reporters, but fused proteins can reduce the yield, yield, and fluorescence of these GFPs.[1] They perform the process properly, when expressed alone or when it is fused to well-folded proteins; In addition, the resistance of GFP is dependent on the chemistry and thermal denaturation. In this project we will use a GFP super-folder, which is a variation of the green fluorescent protein (GFP). Frequently, wild-type GFP is misfolded when expressed in E. coli and when expressed as fusions with other proteins. Unlike this one, the GFP super-folder contains 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T[2], giving it a better tolerance to circular permutation, greater resistance to chemical denaturing[3] and better folding kinetics. Therefore, it can be folded correctly even though the fused protein is not well folded. In 2006 it was evidenced through X-ray crystallographic structural analysis, the presence of a network of five-member ion pairs in the GFP superfolder, based on its S30R mutation; and thus improving its folding compared to the GFP reporter.

 

Proteina cafe 
  
BONE MORPHOGENETIC PROTEIN II

The discovery of BMPs by Urist in 1965 has been a breakthrough in research that has been shown that the protein is able to stimulate bone production. Due to these properties, this protein is currently used in various fields such as Traumatology, Tissue Engineering and orthopedic surgery in which recombinant human BMP2 (rhBMP2) is used. The implantation of BMP2 in a collagen sponge induces the formation of new bone and can be used as a treatment for certain bone defects[4].

Oral surgery has benefited in particular with the commercialization of this protein, since the use of BMP2 in absorbable collagen sponges has significantly reduced the costs of the interventions and the pain suffered by patients with degenerative disease of the lumbar discotheques.

CELLULOSE-BINDING DOMAINS

Cellulose, the most abundant biopolymer and biorenewable compound Earth, is a recalcitrant polysaccharide[1]. Cellulolytic organisms are capable of degrading cellulose which involves excretion of endo- and exo-glucanases as well as glucosidases. Structurally, these enzymes are modular, consisting of a catalytic domain and cellulose-binding domain (CBD), as well as possible ancillary domains[2]. Because of the modules play generally their respective role independently, the CBD has been studied to improve the cellulose degradation as well as to bind other functional proteins. It has been foun that CBD can be found at the N-terminal or at the C-terminal region of these enzymes[4].

In order to evaluate an N-terminal and a C-terminal CBD we chose the domain of Clostridium thermocellum cellulosome-scaffolding protein A (cipA) and the domain of Cellulomonas fimi exoglucanase (Cex). We used the CBDcipA because the high affinity among other CBDs reported by the Imperail College London team (2014).

The modules are joined by linkers that are variable in terms of length and amino acid composition. The length ranges from a few to up to 150 amino acids whereas the sequences are rich in proline or/and hydroxyamino acids[3]. Because of the synergistic activity between the catalytic and cellulose-binding domain is dependent of the length and/or linker sequence, we have used their respective endogenous linkers[2].

 

References

Ummatyotin, S., & Manuspiya, H. (2014). A critical review on cellulose: From fundamental to an approach on sensor technology . Renewable and Sustainable Energy Reviews, 402-409.

Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Review bacterial cellulose-a masterpiece of nature's art . Journal of material science, 261-270.

Foresti, L., Vazquez, A., & Boury, B. (2016). Appiation of bacterial cellulose as precusor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles. Carbohydrate polymers.

MAneerung, T., Tokura, S., Rujiracanit, & R. (2007). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate polymers, 43-51.

Helenius, C., Backhdal, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, & B. (2005). In vivo biocompatibility of bacterial cellulose. Wiley InterScience, 431-438.

Backdahl, H., Helenius, G., Bodin, A., Naanmmark, U., Johansson, R., Risberg, B., & Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 2141-2149.

KOWALCZYK, Tomasz, et al. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World Journal of Microbiology and Biotechnology, 2014, vol. 30, no 8, p. 2141-2152.

PARK, Ji-Eun; WON, Jong-In. Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnology and Bioprocess Engineering, 2009, vol. 14, no 5, p. 662.

MCMILLAN, R. Andrew; CONTICELLO, Vincent P. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules, 2000, vol. 33, no 13, p. 4809-4821.

MARTÍNEZ-OSORIO, Hernán, et al. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Current eye research, 2009, vol. 34, no 1, p. 48-56.

Guan, H., Gurau, G. & Rogers, R. (2012). Ionic liquid processing of cellulose. Chemical Society Reviews. Issue 4, 2012

Poon, D., Withers, Stephen., and McIntosh, L. (2006). Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi Xylanase Cex through NMR spectroscopic analysis. The Journal of Biological Chemistry 282(3):2091-100.

Gilkes, N., Henrissat, B., Kilburn, D., Miller, R. & Warren, R. (1991). Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiology Reviews. 55, 303–315

Zhang, M., Wu, Sheng-Cheng., Zhou, W. & Xu, B. (2012). Imaging and Measuring Single-Molecule Interaction between a Carbohydrate-Binding Module and Natural Plant Cell Wall Cellulose. The Journal of Physical Chemistry 116, 9949−9956

Schaerli, Y., Munteanu, A., Gili, M., Cotterell, J., Sharpe, J., & Isalan, M. (2014). A unified design space of synthetic stripe-forming networks. Nature communications, 5, 4905.

Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature biotechnology, 24(1), 79.

Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., & Vale, R. D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3), 635-646.

Francisca Pulido, J. G. (10 de 12 de 2013). Actualidad Médica . Obtenido de BMP-2 in Traumatology. Advances in Tissue Engineering: https://www.actualidadmedica.es/archivo/2013/790/rev01.html