Difference between revisions of "Team:BostonU HW"

 
(41 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{BostonU_HW}}
+
{{BostonU_HW/CSS}}
 +
{{BostonU_HW/Nav_Bar}}
 
<html>
 
<html>
 +
<head>
 +
  <meta charset="utf-8">
 +
  <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
 +
  <meta name="description" content="Start your development with a Design System for Bootstrap 4.">
 +
  <meta name="author" content="Creative Tim">
 +
  <title>Argon Design System - Free Design System for Bootstrap 4</title>
 +
  <script src="https://2018.igem.org/Template:BostonU_HW/JS_jquery?action=raw&ctype=text/javascript" type="text/javascript"></script>
 +
  <script src="https://2018.igem.org/Template:BostonU_HW/JS_bootstrap_min?action=raw&ctype=text/javascript" type="text/javascript"></script>
  
 +
<!-- /* ADJUSTS DEFAULT iGEM CONTENT */-->
  
 +
<style type="text/css">
 +
.logo_2018, #sideMenu, #firstHeading, #bars_item { /* HIDES SOME UNWANTED STUFF COMPLETELY */
 +
    display: none;
 +
}
 +
#globalWrapper, #content { /* MAKES BACKGROUND OF MEDIAWIKI TRANSPARENT */
 +
    background-color: transparent;
 +
}
 +
/* ADJUSTS DEFAULT iGEM CONTENT */
  
<div class="column full_size">
+
.logo_2017, #sideMenu, #firstHeading, #bars_item { /* HIDES SOME UNWANTED STUFF COMPLETELY */
<h1>Description</h1>
+
    display: none;
 
+
}
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
+
#globalWrapper, #content { /* MAKES BACKGROUND OF MEDIAWIKI TRANSPARENT */
 
+
    background-color: transparent;
 +
}
 +
body, html, #globalWrapper, #bodyContent, #HQ_page {
 +
width: 100%;
 +
margin: 0;
 +
padding: 0;
 +
height: 100%;
 +
}
 +
#content {
 +
width: 100%;
 +
margin: 0;
 +
margin-top: -33px;
 +
padding: 0;
 +
height: 100%;
 +
}
 +
html {
 +
-webkit-font-smoothing: antialiased;
 +
}
 +
#logo{
 +
height:100%;
 +
width:100%;
 +
margin-top: 2%;
 +
}
 +
</style>
 +
</head>
 +
<body>
 +
  <main>
 +
    <section class="section-profile-cover section-shaped my-0">
 +
      <div class="shape shape-style-1 shape-default shape-skew alpha-4"></div>
 +
      <div class="container">
 +
        <div class="row justify-content-center">
 +
          <div class="col-lg-4 pt-5">
 +
          <img src="https://static.igem.org/mediawiki/2018/c/c9/T--BostonU_HW--TERRA_logo.png" style="width: 250px;" class="img-fluid">
 +
          </div>
 +
          <div class="col-lg-8 pt-lg">
 +
            <h1 class="display-1 mb-0">TERRA</h1>
 +
            <div class="lead text-dark mt-0 mb-5">The Bridge Between Microfluidics and Benchtop Biology</div>
 +
          </div>
 +
        </div>
 +
      </div>
 +
    </section>
 +
    <section class="section section-skew">
 +
      <div class="container">
 +
        <div class="card card-profile shadow mt--300">
 +
          <div class="px-4 pt-3">
 +
        <div class="row justify-content-center">
 +
          <div class="col-lg-12">
 +
            <div class="px-4 pt-3">
 +
            <!-- Basic elements -->
 +
            <h2 class=display-3>Welcome to the 2018 BostonU HW Project: TERRA</p></h2>
 +
            <small class= "h6 text-default"> Microfluidics allows for the manipulation of small amounts of fluids on the scale of microliters and nanoliters. The application of microfluidics in synthetic biology research would enable scientists to design and implement synthetic biology systems more efficiently and with greater reproducibility.
 +
              <br>
 +
              <br>
 +
              While microfluidics is not new to the field of synthetic biology, it is not currently widely used or accessible to many benchtop biologists. The current “lab on a chip” microfluidic devices are highly specialized to each experiment and expensive to manufacture. In order to analyze the results of the experiments on microfluidic chips, many designs embed sensors directly into the chip. Many of these sensors, however, already exist as traditional analytical devices, such as plate readers. These devices could be used for analysis of microfluidic outputs if the outputs were dispensed selectively into a compatible vessel, such as a microtiter plate. If this were possible, synthetic biologists would be able to incorporate microfluidic chips to streamline their experiments without sinking time and money to design and fabricate highly specialized chips.
 +
              <br>
 +
              <br>
 +
              <b>Our project, TERRA, aims to create an automated system that bridges benchtop biology and microfluidics</b>. Terra is comprised of three main components:
 +
              <br>
 +
              <br>
 +
              <ol>
 +
                <li> <b>Microfluidics</b>: A microfluidic chip designed to execute a desired biological experiment. </li>
 +
                <br>
 +
                <li> <b>Hardware</b>: A low-cost, accessible active XY-plane selectively dispenses the output of the microfluidic chip to a 96-well plate and automated control syringes.</li>
 +
                <br>
 +
                <li> <b>Software</b>: A software interface that will allow the user to detail the parameters of the experiment run on the chip; the specific location per output on the 96-well plate; and the amount of each output dispensed. </li>
 +
              </ol>
 +
              <br>
 +
<br>
 
</div>
 
</div>
  
 
+
</small>
 
+
            </div>
 
+
              <br>
 
+
            </div>
 
+
          </div>
 +
        <br>
 +
        <div class="card card-profile shadow px-4 pt-3">
 +
          <div class="px-4 pt-3">
 +
        <div class="row justify-content-center">
 +
          <div class="col-lg-12">
 +
            <div class="px-4 pt-3">
 +
            <!-- Basic elements -->
 +
<h2 class="display-3 mb-0">Giant Jamboree</p></h2>
 +
              <small class= "h4 text-default"> Awards </p></small>
 +
              <small class="h6 text-default">
 +
              We are proud to have achieved a Gold Medal and nominations for Best Hardware and Best Software tool at the Jamboree! </p>
 +
                <img src="https://static.igem.org/mediawiki/2018/8/80/T--BostonU_HW--jamboree.jpg" width="100%" type="img-fluid">
 +
                <br><br>
 +
              </small>
 +
            </div>
 +
          </div>
 +
        </div>
 +
      </div>
 +
    </section>
 +
  </main>
 +
</body>
 
</html>
 
</html>
 +
{{BostonU_HW/Javascript}}

Latest revision as of 21:21, 7 December 2018

Argon Design System - Free Design System for Bootstrap 4

Argon Design System - Free Design System for Bootstrap 4

TERRA

The Bridge Between Microfluidics and Benchtop Biology

Welcome to the 2018 BostonU HW Project: TERRA

Microfluidics allows for the manipulation of small amounts of fluids on the scale of microliters and nanoliters. The application of microfluidics in synthetic biology research would enable scientists to design and implement synthetic biology systems more efficiently and with greater reproducibility.

While microfluidics is not new to the field of synthetic biology, it is not currently widely used or accessible to many benchtop biologists. The current “lab on a chip” microfluidic devices are highly specialized to each experiment and expensive to manufacture. In order to analyze the results of the experiments on microfluidic chips, many designs embed sensors directly into the chip. Many of these sensors, however, already exist as traditional analytical devices, such as plate readers. These devices could be used for analysis of microfluidic outputs if the outputs were dispensed selectively into a compatible vessel, such as a microtiter plate. If this were possible, synthetic biologists would be able to incorporate microfluidic chips to streamline their experiments without sinking time and money to design and fabricate highly specialized chips.

Our project, TERRA, aims to create an automated system that bridges benchtop biology and microfluidics. Terra is comprised of three main components:

  1. Microfluidics: A microfluidic chip designed to execute a desired biological experiment.

  2. Hardware: A low-cost, accessible active XY-plane selectively dispenses the output of the microfluidic chip to a 96-well plate and automated control syringes.

  3. Software: A software interface that will allow the user to detail the parameters of the experiment run on the chip; the specific location per output on the 96-well plate; and the amount of each output dispensed.




Giant Jamboree

Awards

We are proud to have achieved a Gold Medal and nominations for Best Hardware and Best Software tool at the Jamboree!