(20 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
<!--- Own CSS ---> | <!--- Own CSS ---> | ||
<link rel="stylesheet" href="https://2018.igem.org/Template:HebrewU/CSS?action=raw&ctype=text/css"> | <link rel="stylesheet" href="https://2018.igem.org/Template:HebrewU/CSS?action=raw&ctype=text/css"> | ||
− | |||
− | |||
− | |||
<!--- Main Menu script ---> | <!--- Main Menu script ---> | ||
Line 53: | Line 50: | ||
.ulogo { display:none; } | .ulogo { display:none; } | ||
} | } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Line 227: | Line 70: | ||
} | } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
.mw-content-ltr { | .mw-content-ltr { | ||
Line 292: | Line 126: | ||
<li><a href="https://2018.igem.org/Team:HebrewU/Description">Description</a></li> | <li><a href="https://2018.igem.org/Team:HebrewU/Description">Description</a></li> | ||
<li><a href="https://2018.igem.org/Team:HebrewU/Model">Model</a></li> | <li><a href="https://2018.igem.org/Team:HebrewU/Model">Model</a></li> | ||
− | <li><a href="https://2018.igem.org/Team:HebrewU/ | + | <li><a href="https://2018.igem.org/Team:HebrewU/Demonstrate">Results</a></li> |
<li><a href="https://2018.igem.org/Team:HebrewU/Parts">Parts</a></li> | <li><a href="https://2018.igem.org/Team:HebrewU/Parts">Parts</a></li> | ||
− | <li><a href="https://2018.igem.org/Team:HebrewU/Software"> | + | <li><a href="https://2018.igem.org/Team:HebrewU/Software">MOOLTi</a></li> |
</ul> | </ul> | ||
Line 346: | Line 180: | ||
<a href="https://2018.igem.org/Team:HebrewU/Description"><button class="b_huji_small_subnav">Description</button></a> | <a href="https://2018.igem.org/Team:HebrewU/Description"><button class="b_huji_small_subnav">Description</button></a> | ||
<a href="https://2018.igem.org/Team:HebrewU/Model"><button class="b_huji_small_subnav">Model</button></a> | <a href="https://2018.igem.org/Team:HebrewU/Model"><button class="b_huji_small_subnav">Model</button></a> | ||
− | <a href="https://2018.igem.org/Team:HebrewU/ | + | <a href="https://2018.igem.org/Team:HebrewU/Demonstrate"><button class="b_huji_small_subnav">Results</button></a> |
<a href="https://2018.igem.org/Team:HebrewU/Parts"><button class="b_huji_small_subnav">Parts</button></a> | <a href="https://2018.igem.org/Team:HebrewU/Parts"><button class="b_huji_small_subnav">Parts</button></a> | ||
− | <a href="https://2018.igem.org/Team:HebrewU/Software"><button class="b_huji_small_subnav"> | + | <a href="https://2018.igem.org/Team:HebrewU/Software"><button class="b_huji_small_subnav">MOOLTi</button></a> |
</div> | </div> | ||
Line 376: | Line 210: | ||
<div class="huji_small_navbar_panel"> | <div class="huji_small_navbar_panel"> | ||
<a href="https://2018.igem.org/Team:HebrewU/Members"><button class="b_huji_small_subnav">Members</button></a> | <a href="https://2018.igem.org/Team:HebrewU/Members"><button class="b_huji_small_subnav">Members</button></a> | ||
− | <a href="https://2018.igem.org/Team:HebrewU/ | + | <a href="https://2018.igem.org/Team:HebrewU/Attributions"><button class="b_huji_small_subnav">Attributions</button></a> |
<a href="https://2018.igem.org/Team:HebrewU/Collaborations"><button class="b_huji_small_subnav">Collaborations</button></a> | <a href="https://2018.igem.org/Team:HebrewU/Collaborations"><button class="b_huji_small_subnav">Collaborations</button></a> | ||
<a href="https://2018.igem.org/Team:HebrewU/Photo_Gallery"><button class="b_huji_small_subnav">Photo Gallery</button></a> | <a href="https://2018.igem.org/Team:HebrewU/Photo_Gallery"><button class="b_huji_small_subnav">Photo Gallery</button></a> | ||
Line 412: | Line 246: | ||
} | } | ||
</script> | </script> | ||
+ | |||
+ | <a onClick="topFunction()" id="myBtn_up" title="Go to top"><img src="https://static.igem.org/mediawiki/2018/1/1e/T--hebrewu--arrow_up.png" width="40px" /></a> | ||
+ | |||
+ | |||
+ | <script> | ||
+ | // When the user scrolls down 20px from the top of the document, show the button | ||
+ | window.onscroll = function() {scrollFunction()}; | ||
+ | |||
+ | function scrollFunction() { | ||
+ | if (document.body.scrollTop > 20 || document.documentElement.scrollTop > 20) { | ||
+ | document.getElementById("myBtn_up").style.display = "block"; | ||
+ | } else { | ||
+ | document.getElementById("myBtn_up").style.display = "none"; | ||
+ | } | ||
+ | } | ||
+ | |||
+ | // When the user clicks on the button, scroll to the top of the document | ||
+ | function topFunction() { | ||
+ | document.body.scrollTop = 0; | ||
+ | document.documentElement.scrollTop = 0; | ||
+ | } | ||
+ | </script> | ||
+ | |||
+ | |||
<div class="w3-blue-gray"> | <div class="w3-blue-gray"> | ||
<br /><br /> | <br /><br /> | ||
− | < | + | <div class="w3-center w3-animate-left"> |
+ | <img src="https://static.igem.org/mediawiki/2018/e/e5/T--hebrewU--MODEL_HL.png" width="35%"> | ||
+ | <br /> | ||
− | |||
− | |||
<div class="content"> | <div class="content"> | ||
<p style="padding-left:150px;padding-right:150px;text-align:justify;line-height:1.5;color:white;"> | <p style="padding-left:150px;padding-right:150px;text-align:justify;line-height:1.5;color:white;"> | ||
− | + | Our team has created an exploratory model of a metabolic pathway for the enzymatic degradation of TCDD. This model served as the foundation of our project design and the backbone for our lab work. We completed in depth research on enzymes families relevant to TCDD degradation, narrowing down contenders to the enzymes we would eventually use in the lab. While building this model, we utilized a multitude of tools including, but not limited to biochemical analysis, phylogenetic comparison and pathway mapping. Through these tools, we compiled a comprehensive list of enzymes, is strongly rooted in prior academic studies. <br /><br /> | |
+ | |||
</p> | </p> | ||
Line 433: | Line 292: | ||
<div style="text-align:center"> | <div style="text-align:center"> | ||
− | <a onClick="document.getElementById('huji_model_1').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/4/47/T--hebrewu--model2.1.png" style="width: | + | <a onClick="document.getElementById('huji_model_1').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/4/47/T--hebrewu--model2.1.png" style="width:70%"> |
</a> | </a> | ||
− | <a onClick="document.getElementById('huji_model_3').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/d/d9/T--hebrewu--model3.png" style="width: | + | <a onClick="document.getElementById('huji_model_3').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/d/d9/T--hebrewu--model3.png" style="width:70%"> |
</a> <br /> | </a> <br /> | ||
− | <a onClick="document.getElementById('huji_model_4').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/4/41/T--hebrewu--model4.2.png" style="width: | + | <a onClick="document.getElementById('huji_model_4').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/4/41/T--hebrewu--model4.2.png" style="width:70%"> |
</a> | </a> | ||
<div class="content"> | <div class="content"> | ||
<p style="padding-left:150px;padding-right:150px;text-align:justify;line-height:1.5;color:white;"> | <p style="padding-left:150px;padding-right:150px;text-align:justify;line-height:1.5;color:white;"> | ||
− | + | The final pathway we tested in the lab, consists of dehalogenase, dioxygenase and hydrolase enzymes. Additionally, Cyp 450 and Lignin Peroxidase enzymes were researched, enzymes have been previously found to breakdown TCDD. Despite that neither of these enzymes catalyze a specific step in the final engineered pathway, both are excellent candidates for TCDD Degradation. | |
</p> | </p> | ||
− | <a onClick="document.getElementById('huji_model_2').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/1/18/T--hebrewu--model2.2.png" style="width: | + | <a onClick="document.getElementById('huji_model_2').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/1/18/T--hebrewu--model2.2.png" style="width:35%"> |
</a><br/> | </a><br/> | ||
− | <a onClick="document.getElementById('huji_model_5').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/c/cd/T--hebrewu--model4.1.png" style="width: | + | <a onClick="document.getElementById('huji_model_5').style.display='block'"><img src="https://static.igem.org/mediawiki/2018/c/cd/T--hebrewu--model4.1.png" style="width:35%"> |
</a><br /> | </a><br /> | ||
Line 456: | Line 315: | ||
</div> | </div> | ||
− | <!------------ model_1 modal -------------> | + | <!------------ model_1 modal start-------------> |
<div id="huji_model_1" class="w3-modal"> | <div id="huji_model_1" class="w3-modal"> | ||
<div class="w3-modal-content w3-animate-zoom"> | <div class="w3-modal-content w3-animate-zoom"> | ||
Line 504: | Line 363: | ||
<!------------ model_1 modal end-------------> | <!------------ model_1 modal end-------------> | ||
− | <!------------ model_2 modal -------------> | + | <!------------ model_2 modal start-------------> |
<div id="huji_model_2" class="w3-modal"> | <div id="huji_model_2" class="w3-modal"> | ||
<div class="w3-modal-content w3-animate-zoom"> | <div class="w3-modal-content w3-animate-zoom"> | ||
Line 532: | Line 391: | ||
</p> | </p> | ||
<br /> | <br /> | ||
+ | |||
+ | <div align="center"> | ||
+ | <button type="button" class="w3-button w3-teal" data-toggle="collapse" data-target="#Results_3">Further Reading:</button></div> | ||
+ | |||
+ | |||
+ | <div id="Results_3" class="collapse"> | ||
+ | |||
− | |||
<h2 class="w3-center" style="color:black">Plant CYP450:</h2> | <h2 class="w3-center" style="color:black">Plant CYP450:</h2> | ||
<p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | ||
Line 567: | Line 432: | ||
− | + | </div> | |
+ | <br /> <br /> <br /> | ||
</div> | </div> | ||
<footer class="w3-container w3-purple"> | <footer class="w3-container w3-purple"> | ||
Line 576: | Line 442: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | </ | ||
<!------------ model_2 modal end-------------> | <!------------ model_2 modal end-------------> | ||
Line 587: | Line 454: | ||
<div class="w3-container"> | <div class="w3-container"> | ||
<br /> | <br /> | ||
− | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5">Many of these reactions have little or no precedent in organic chemistry. Di-oxygenase and mono-oxygenase enzymes that are able to activate dioxygen are divided into oxidases, which use oxygen as an oxidant, and reduce dioxygen to hydrogen peroxide or water; and oxygenases, which incorporate oxygen atoms from dioxygen into the product(s).Dioxygenases incorporate both atoms of oxygen into the product(s). </p> |
− | + | ||
<br /> | <br /> | ||
<div style="text-align:center"> | <div style="text-align:center"> | ||
Line 594: | Line 460: | ||
</div> | </div> | ||
<p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | ||
− | Oxidization of Dibenzofuran, a dioxin like molecule we used in the | + | Oxidization of Dibenzofuran, a dioxin like molecule we used in the lab1 <sup>1</sup>. <br /><br /> |
Most dioxygenase enzymes require a metal cofactor, which is most often iron(II or III). Dioxygenases primarily oxidize aromatic compounds and, therefore, have applications in environmental remediation. Dioxygenases serve as part of nature’s strategy for degrading aromatic molecules in the Environment. They are often found in the soil bacteria as well as almost all higher plants. Dioxygenase enzymes are used for a multitude of separate steps in the pathway described. | Most dioxygenase enzymes require a metal cofactor, which is most often iron(II or III). Dioxygenases primarily oxidize aromatic compounds and, therefore, have applications in environmental remediation. Dioxygenases serve as part of nature’s strategy for degrading aromatic molecules in the Environment. They are often found in the soil bacteria as well as almost all higher plants. Dioxygenase enzymes are used for a multitude of separate steps in the pathway described. | ||
Line 603: | Line 469: | ||
</div> | </div> | ||
<p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | ||
− | + | Proposed initial dioxygenolytic attack on the tested CDFs and CDDs by DFDO and CARDO. Panel 1, 2-CDF, 5′-chloro-2,2′,3-THB (reaction A) and 5-chloro-2,2′,3-THB (reaction B); panel 2, 2,8-DCDF, 5,5′-dichloro-2,2′,3-THB (reaction A); panel 3, 2-CDD, 5′-chloro-2,2′,3-THDE (reaction A), 4′-chloro-2,2′,3-THDE (reaction A′), 5-chloro-2,2′,3-THDE (reaction B), and 4-chloro-2,2′,3-THDE (reaction B′); panel 4, 2,3-DCDD, 4′,5′-dichloro-2,2′,3-THDE (reaction A) and 4,5-dichloro-2,2′,3-THDE (reaction B); panel 5, 2,7-DCDD, 4,5′-dichloro-2,2′,3-THDE (reaction A) and 4′,5-dichloro-2,2′,3-THDE (reaction B); panel 6, 1,2,3-TCDD, 4′,5′,6′-trichloro-2,2′,3-THDE (reaction A), 3′,4′,5′-trichloro-2,2′,3-THDE (reaction A′), and 4,5,6-trichloro-2,2′,3-THDE (reaction B). Possible sites attacked by angular dioxygenases are indicated by A or A′ on the nonsubstituted rings and by B or B′ on the halogen-substituted rings, with the exception of those in panels 2 and 5. ND, not detected. <sup>2</sup> <br /> | |
+ | <br /> | ||
+ | Numerous studies have been done on a number of Dioxygenase enzymes, and their ability to degrade dioxins: | ||
+ | </p> | ||
− | + | <h2 class="w3" style="color:black;padding-left:90px;">Further Reading</h2> | |
<p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | ||
− | + | 1.<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC206875/">"Characterization of 2,2',3-Trihydroxybiphenyl Dioxygenase, an Extradiol Dioxygenase from the Dibenzofuran- and Dibenzo-pDioxin-Degrading Bacterium Sphingomonas sp. Strain RW1";B Happe et. al, J Bacteriol. 1993 Nov; 175(22): 7313–7320 </a><br /> | |
− | + | 2.<a href="https://pdfs.semanticscholar.org/b33d/229d6320620e843a0ab71562c66a38b71075.pdf"> "Molecular Bases of Aerobic Bacterial Degradation of Dioxins: Involvement of Angular Dioxygenases"; H. Nojiri et. al, Biosci. Biotchnol. Biochem.,66 (10) 2001-2016,2002 </a> <br /> | |
− | + | 3. <a href="https://link.springer.com/article/10.1007/s00203-005-0045-9"> "Isolation and characterization of a gene cluster for dibenzofuran degradation in a new dibenzofuran-utilizing bacterium, Paenibacillus sp. strain YK5"; T. Iida, Archives of Microbiology January 2006, 184:305. </a><br /> | |
− | + | 4.<a href="http://www.craftychemist.net/inorganic/wp-content/uploads/2010/02/tetrahedron2003v59p7075.pdf"> "Dioxygenase enzymes: catalytic mechanisms and chemical models"; T.D.H. Bugg, Tetrahedron 59 (2003) 7075–7101. </a><br /> | |
− | + | </p> <br /> | |
− | Isolation and characterization of a gene cluster for dibenzofuran degradation in a new dibenzofuran-utilizing bacterium, Paenibacillus sp. strain YK5. </a> </ | + | |
− | + | <h2 class="w3" style="color:black;padding-left:90px;">References</h2> | |
− | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | |
− | + | 1.<a href="https://www.semanticscholar.org/paper/Dibenzofuran-4,4a-dioxygenase-from-Sphingomonas-sp.-B%C3%BCnz-Cook/3d6600bf8164f0d6570ca9d7208f865607cdd631">"Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system"; Patricia V. Bünz et. al, Journal of bacteriology 175 20 (1993): 6467-75.7313–7320 </a><br /> | |
+ | 2.<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC93062/"> "Degradation of Chlorinated Dibenzofurans and Dibenzo-p-Dioxins by Two Types of Bacteria Having Angular Dioxygenases with Different Features";Hiroshi Habec et. al, Appl Environ Microbiol. 2001 Aug; 67(8): 3610–3617. </a> <br /> | ||
+ | |||
+ | |||
</p> | </p> | ||
</div> | </div> | ||
Line 637: | Line 509: | ||
<div class="w3-container"> | <div class="w3-container"> | ||
<br /> | <br /> | ||
− | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5">Hydrolases are hydrolytic enzymes, biochemical catalysts that use water to cleave chemical bonds, usually dividing a large molecule into two smaller molecules. Examples of common hydrolases include esterases, proteases, glycosidases, nucleosidases, and lipases. Hydrolases carry out important degradative reactions in almost all organisms. These enzymes have a catalyze reactions in a multitude of biological processes including digestion and neurotransmitter degradation in animals, bacterial cell-wall growth, and extracellular degradation of cellulose, xylan, and chitin, in fungi. | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5">Hydrolases are hydrolytic enzymes, biochemical catalysts that use water to cleave chemical bonds, usually dividing a large molecule into two smaller molecules. Examples of common hydrolases include esterases, proteases, glycosidases, nucleosidases, and lipases. Hydrolases carry out important degradative reactions in almost all organisms. These enzymes have a catalyze reactions in a multitude of biological processes including digestion and neurotransmitter degradation in animals, bacterial cell-wall growth, and extracellular degradation of cellulose, xylan, and chitin, in fungi.<sup> 1,2 </sup> </p> |
<div style="text-align:center"> | <div style="text-align:center"> | ||
Line 643: | Line 515: | ||
<img src="https://static.igem.org/mediawiki/2018/b/b2/T--hebrewu--model_txt4.png" style="width:60%"> <br /> | <img src="https://static.igem.org/mediawiki/2018/b/b2/T--hebrewu--model_txt4.png" style="width:60%"> <br /> | ||
</div> | </div> | ||
+ | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | ||
+ | General scheme Hydrolase catalyzed reactions. <sup>3</sup> | ||
+ | </p> | ||
<h2 class="w3" style="color:black;padding-left:90px;">Further Reading:</h2> | <h2 class="w3" style="color:black;padding-left:90px;">Further Reading:</h2> | ||
− | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | |
− | + | 1. <a href="https://www.ncbi.nlm.nih.gov/pubmed/24118890">"Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1"; EM Hartmen, Environ Microbiol. 2014 Jan;16(1):162-76. </a><br /> | |
− | + | 2. <a href="https://www.nature.com/articles/s41598-017-00258-w">"Distribution and diversity of enzymes for polysaccharide degradation in fungi"; R. Berlemont, Scientific Reportsvolume 7, Article number: 222 (2017). | |
− | + | </a> </p> | |
− | + | ||
− | + | <h2 class="w3" style="color:black;padding-left:90px;">References:</h2> | |
− | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | |
− | </ | + | 1. Devlin, T. M. (2002). Textbook of Biochemistry, 5th edition. New York: John Wiley. <br /> |
− | + | 2. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986426/">"The role of hydrolases in bacterial cell-wall growth"; T.K. Lee et. al, Curr Opin Microbiol. 2013 Dec; 16(6): 760–766.</a> <br /> | |
+ | 3. <a href="https://pubs.rsc.org/en/content/articlehtml/2003/ob/b302109b">"Reagents for (ir)reversible enzymatic acylations"; U Hanefeild, Organic & Biomolecular Chemistry, Issue 14, 2003.</a> <br /> | ||
+ | </p> | ||
+ | </div> | ||
<footer class="w3-container w3-green"> | <footer class="w3-container w3-green"> | ||
<p> </p> | <p> </p> | ||
Line 673: | Line 551: | ||
<div class="w3-container"> | <div class="w3-container"> | ||
<br /> | <br /> | ||
− | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5">White rot fungi, the fungi responsible for the biodegradation of lignin in wood, are remarkable in their ability to degrade a wide variety of environmental pollutants. Insoluble, generally very recalcitrant chemicals are mineralized by the fungi. The fungi also mineralized (oxidized to CO2) some chemicals that are already highly oxidized. In general it is thought that this biodegradative ability is related to the ability of these fungi to degrade lignin. This ability, which is unique to white rot fungi, is thought to be dependent on a family of peroxidases secreted by the fungi | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5">White rot fungi, the fungi responsible for the biodegradation of lignin in wood, are remarkable in their ability to degrade a wide variety of environmental pollutants. Insoluble, generally very recalcitrant chemicals are mineralized by the fungi. The fungi also mineralized (oxidized to CO2) some chemicals that are already highly oxidized. In general it is thought that this biodegradative ability is related to the ability of these fungi to degrade lignin. This ability, which is unique to white rot fungi, is thought to be dependent on a family of peroxidases secreted by the fungi; however, a purely oxidative, peroxidase- based system cannot be used to completely degrade lignin. Lignin is highly oxidized so it is difficult to oxidize further. Lignin is a complex heteropolymer with no stereochemical regularity, due at least in part to the free radical mechanism of synthesis. Lignin biodegradation must therefore involve a nonspecific and non-stereoselective mechanism. |
+ | |||
+ | <br /><br /> | ||
− | + | The lignin peroxidases are somewhat unique in that they have higher oxidation potentials (- -1.35 V) than do most peroxidases ( -0.8 V). In this way these enzymes have a somewhat greater range of chemicals that they can oxidize. Due to this none specific, and highly effective oxidation abilities, Lignin peroxidase is an excellent candidate for bioremediation- not only for dioxins, but a wide range of aromatic pollutants.<sup>1</sup> | |
</p> | </p> | ||
Line 684: | Line 564: | ||
</div> | </div> | ||
<p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | ||
− | The C-O--C bond cleavage occurs via the nucleophilic attack of water on a cation rather than via the scavenging of a radical by molecular 02. The first step in this proposed mechanism is the one-electron oxidation of I by the oxidized enzyme intermediate LiP compound I, resulting in the formation of the aryl cation radical A | + | The C-O--C bond cleavage occurs via the nucleophilic attack of water on a cation rather than via the scavenging of a radical by molecular 02. The first step in this proposed mechanism is the one-electron oxidation of I by the oxidized enzyme intermediate LiP compound I, resulting in the formation of the aryl cation radical A. The LiP oxidation of a variety of nonphenolic aromatics to their corresponding aryl cation radicals has been well established. Indeed, the LiP oxidation of the related nonchlorinated compound dibenzop-dioxin to a cation radical has been reported. However, DCDD is considerably less soluble than dibenzo-p-dioxin. Furthermore, chloride is a much better leaving group than hydrogen; therefore, the aryl cation radical A is probably short-lived. For these reasons, the cation radical A was not detected during the oxidation of DCDD by LiP. <br /><br /> |
+ | Attack of H20 at the cation would result in the loss of chloride and the formation of the carbon-centered radical intermediate B. One-electron oxidation of B by LiP or MnP would result in the formation of the cation intermediate C. Attack of H20 on intermediate C would lead to the first C--O-C bond cleavage and the formation of the quinone intermediate D. Subsequent oxidation of the phenolic function of D would generate the phenoxy radical E, which is in resonance with the carbon-centered radical E'. Oxidation of E' by either LiP or MnP would yield the cation F. Finally, attack of H20 on the cation F would result in the cleavage of the second C-O-C bond and generation of 4-chloro-1,2-benzoquinone (V) and 2-hydroxy-1,4-benzoquinone (VIII). In the metabolic pathway, both chlorine atoms are removed from the aromatic rings as chloride before ring cleavage takes place. This is advantageous because the possible formation of toxic chlorinated aliphatics is avoided. Indeed, peroxidasecatalyzed oxidative dechlorination followed by reduction of the quinone products results in the introduction of phenolic groups, which facilitate subsequent ring opening. Similar peroxidase-catalyzed oxidative dechlorinations of polychlorinated phenols have been reported. <br /> We propose that a similar metabolic pathway is probably involved in the fungal degradation of TCDD and have initiated studies to examine its metabolism.<sup>2</sup> | ||
+ | </p> | ||
<h2 class="w3" style="color:black;padding-left:90px;">Further Reading:</h2> | <h2 class="w3" style="color:black;padding-left:90px;">Further Reading:</h2> | ||
− | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | |
− | + | 1. <a href="https://www.sciencedirect.com/science/article/pii/S014102290400153X">"Bioremediation of 2,3,7,8-Tetrachlorodibenzo-p-Dixoin in Soil by Fungi Screened from Nature Potential of extra cellular enzymes in remediation of polluted soils: a review"; L. Gianfreda, Enzyme and Microbial Technology Volume 35, Issue 4, 1 September 2004, Pages 339-354. </a><br /> | |
− | + | 2. <a href="https://ehp.niehs.nih.gov/doi/pdf/10.1289/ehp.95103s459">"Mechanisms of Degradation by White Rot Fungi";S.D. Aust, Environmental Health Perspectives, Vol. 103, Supplement 5: Biodegradation (Jun., 1995), pp. 59-61. | |
− | + | </a> </p> | |
− | + | ||
− | </ | + | <h2 class="w3" style="color:black;padding-left:90px;">References:</h2> |
− | + | <p style="padding-left:90px;padding-right:90px;text-align:justify;line-height:1.5"> | |
+ | 1. <a href="http://science.sciencemag.org/content/228/4706/1434">"Oxidation of persistent environmental pollutants by a white rot fungus"; JA Bumpus et. al, Science 21 Jun 1985: Vol. 228, Issue 4706, pp. 1434-1436.</a> <br /> | ||
+ | 2. <a href="https://jb.asm.org/content/jb/174/7/2131.full.pdf">"Degradation of 2,7-Dichlorodibenzo-p-Dioxin by the Lignin Degrading Basidiomycete Phanerochaete chrysosporium "; K Valli et. al, Journal of Bacteriology, Apr. 1992, p. 2131-2137</a> <br /> | ||
+ | </p> | ||
+ | </div> | ||
<footer class="w3-container w3-purple"> | <footer class="w3-container w3-purple"> | ||
<p> </p> | <p> </p> |
Latest revision as of 17:29, 12 December 2018
Our team has created an exploratory model of a metabolic pathway for the enzymatic degradation of TCDD. This model served as the foundation of our project design and the backbone for our lab work. We completed in depth research on enzymes families relevant to TCDD degradation, narrowing down contenders to the enzymes we would eventually use in the lab. While building this model, we utilized a multitude of tools including, but not limited to biochemical analysis, phylogenetic comparison and pathway mapping. Through these tools, we compiled a comprehensive list of enzymes, is strongly rooted in prior academic studies.
The final pathway we tested in the lab, consists of dehalogenase, dioxygenase and hydrolase enzymes. Additionally, Cyp 450 and Lignin Peroxidase enzymes were researched, enzymes have been previously found to breakdown TCDD. Despite that neither of these enzymes catalyze a specific step in the final engineered pathway, both are excellent candidates for TCDD Degradation.